±âº» ÆäÀÌÁö Æ÷Æ®Æú¸®¿À ´ëÇѹα¹ÀÇ ÀüÅë°ÇÃà Áß±¹°ú ÀϺ»ÀÇ ÀüÅë°ÇÃà ¼­À¯·´°ú ¹Ì±¹ÀÇ °ÇÃà ±¹¿ª û¿À°æ Çö´ë ¿ìÁÖ·Ð ´ëÇѹα¹ÀÇ »êdz°æ ¹éµÎ´ë°£ Á¾ÁÖ»êÇà ³×ÆÈ È÷¸»¶ó¾ß Æ®·¹Å· ¸ùºí¶û Áö¿ª Æ®·¹Å· ¿ä¼¼¹ÌƼ ij³â µî Ƽº£Æ® ½ÇÅ©·Îµå ¾ß»ý »ý¹° Æijë¶ó¸¶»çÁø °¶·¯¸® Ŭ·¡½Ä ·¹ÄÚµå °¶·¯¸® AT Æ÷·³ Æ®·¹Å· Á¤º¸ ¸µÅ©


 ·Î±×ÀÎ  È¸¿ø°¡ÀÔ

Waves  3c. Wave packets and dispersion
    ±è°ü¼®  2024-04-04 09:01:37, Á¶È¸¼ö : 90
- Download #1 : Wa_Fig_3cs.jpg (433.4 KB), Download : 3



          3.4 Wave packets and dispersion    

   Consider what would happen if the frequency components that make up the waveform (called a "wave packet" if it's localized in time and space) had different speeds. We can see an example of that in Fig. 3.24.. Three frequency components have the right amplitude and frequency to add up to a square(ish) pulse at some initial location and time. But at a different location the relative phase between the component waves will be different. We can see the result of that change in relative phase in the bottom-right portion of the Fig. 3.24.: The shape of the resultant waveform changes over distance.
   This effect is called "dispersion". And when dispersion is present, the speed of each individual frequency component is called the phase velocity or phase speeds of the component, and the speed of the wave packet's envelope is called the "group velocity" or group speed.(4) In order to understand the group velocity of a wave packet, look at an example shown in Fig. 3.25. Here the two component waves start off in phase and produce a large resultant wave. When the two component waves have slightly different frequencies and the amplitude of the resultant waveform varies as it does in Fig. 3.25, and the waveform is said to be "modulated", and this particular type of modulation is called "beats". The modulation envelope shown here provides a convenient way to determine the group velocity of a wave packet. To see how that works, write the phase of them as 𝜙 = 𝑘𝑥 - 𝜔𝑡,
            𝜙1 = 𝑘1𝑥 - 𝜔1𝑡,     𝜙2 = 𝑘2𝑥 - 𝜔2𝑡.        
This means that the phase difference between the wave is
            𝛥𝜙 = 𝜙2 - 𝜙1 = (𝑘2𝑥 - 𝜔2𝑡) - (𝑘1𝑥 - 𝜔1𝑡) = (𝑘2 - 𝑘1)𝑥 - (𝜔2 - 𝜔1)𝑡.
To determine how fast that envelope moves, consider what happen over a small increment of time (𝛥𝑡) and distance (𝛥𝑥). If we are following a point on the resultant wave, the relative phase between thee two component must be the same. So whatever change occurs due to the passage of time 𝛥𝑡 must be compensated for by a phase change due to a change in 𝛥𝑥. his means that
    (3.36)   (𝑘2 - 𝑘1)𝛥𝑥 = (𝜔2 - 𝜔1)𝛥𝑡     or     𝛥𝑥/𝛥𝑡 =  (𝜔2 - 𝜔1)/(𝑘2 - 𝑘1).
This is the group velocity for two components. And a far more general expression can be found with wavenumbers clustered around an average waenumber 𝑘a by expanding 𝜔(𝑘) in a Taylor series:
           𝜔(𝑘) = 𝜔(𝑘a) + 𝑑𝜔/𝑑𝑘 ∣𝑘=𝑘a(𝑘 - 𝑘a) + 1/2! 𝑑2𝜔/𝑑𝑘2𝑘=𝑘a(𝑘 - 𝑘a)2 + ⋅ ⋅ ⋅ .
For the case in which the difference between the wavenumber is small, the higher-order terms of the expression are negligible, so we have
           𝜔(𝑘) ≈ 𝜔(𝑘a) + 𝑑𝜔/𝑑𝑘 ∣𝑘=𝑘a(𝑘 - 𝑘a)     or    [𝜔(𝑘) - 𝜔(𝑘a)]/(𝑘 - 𝑘a) ≈ 𝑑𝜔/𝑑𝑘 ∣𝑘=𝑘a.    
Thus 
           𝑣group = [𝜔(𝑘) - 𝜔(𝑘a)]/(𝑘 - 𝑘a) ≈ 𝑑𝜔/𝑑𝑘∣𝑘=𝑘a.
So the group velocity of a wave packet is 𝑣group = 𝑑𝜔/𝑑𝑘 and the phase velocity of a wave component is 𝑣phase = 𝜔/𝑘.
   When dealing with dispersion, we are to encounter graphs in which 𝜔 is plotted on the vertical axis and 𝑘 is on the horizontal. If no dispersion is present, then the wave angular frequency 𝜔 is related to the wavenumber 𝑘 by 𝑘 = 𝑐1𝑘 where 𝑐1 represents the speed of propagation. In this the case, he dispersion plot is linear, as shown in Fig. 3.26. In the non-dispersive case, the phase velocity 𝜔/𝑘 is the same at all values of 𝑘 and is the same as the group velocity 𝑑𝜔/𝑑𝑘.
   When dispersion is present, the relationship between the phase velocity and the group velocity depends on the nature of the dispersion. In one important case pertaining to quantum waves, the angular frequency is proportional to the square of the wavenumber (𝜔 = 𝑐2𝑘2) as in Fig. 3.27.
In this case the phase velocity and group velocity are
           𝑣phase = 𝜔/𝑘 = 𝑐2𝑘2/𝑘 = 𝑐2𝑘
           𝑣group = 𝑑𝜔/𝑑𝑘 = 𝑑(𝑐2𝑘2)/𝑑𝑘 = 2𝑐2𝑘,
which is the twice the phase velocity as in as in Fig. 3.28. Notice that 𝑣group is increasing twice as big as 𝑣phase.
                                                              
(4) Since velocity is a vector, phase and group velocity should include the direction, but in this context speed and velocity are used interchangeably.

* Textbook: D. Fleisch & J. Kinnaman A Student's Guide to Waves (Cambridge University Press 2015)


Name
Spamfree

     ¿©±â¸¦ Ŭ¸¯ÇØ ÁÖ¼¼¿ä.

Password
Comment

  ´ä±Û¾²±â   ¸ñ·Ïº¸±â
¹øÈ£ Á¦               ¸ñ À̸§ ¿¬°ü ³¯Â¥ Á¶È¸
126    Waves  2. The wave equation    ±è°ü¼® 8 2024-05-07
09:24:42
1516
125      Waves  3a. General solution; Boundary conditions    ±è°ü¼® 8 2024-05-07
09:24:42
1516
124        Waves  3b. Fourier theory    ±è°ü¼® 8 2024-05-07
09:24:42
1516
         Waves  3c. Wave packets and dispersion    ±è°ü¼® 8 2024-05-07
09:24:42
1516
122            Waves  4. Mechanical wave equation    ±è°ü¼® 8 2024-05-07
09:24:42
1516
121              Waves  5. Electromagnetic wave equation    ±è°ü¼® 8 2024-05-07
09:24:42
1516
120                Waves  6. Quantum wave equation    ±è°ü¼® 8 2024-05-07
09:24:42
1516
119  Gravirational Collapse and Space-Time Singularities  📚 🔵    ±è°ü¼® 1 2023-06-12
13:50:03
5498
118  Mathematics of Astronomy  1. Gravity; Light  ✅    ±è°ü¼® 4 2023-05-02
08:31:40
1741
117    Mathematics of Astronomy  2. Parallax, angular size etc.      ±è°ü¼® 4 2023-05-02
08:31:40
1741
116      Mathematics of Astronomy  3. Stars    ±è°ü¼® 4 2023-05-02
08:31:40
1741
115        Mathematics of Astronomy  4. Black holes & cosmology    ±è°ü¼® 4 2023-05-02
08:31:40
1741
114   StillÀÇ <ºí·ÏÀ¸·Î ¼³¸íÇÏ´Â ÀÔÀÚ¹°¸®ÇÐ>  ✅    ±è°ü¼® 3 2022-04-14
18:49:01
1154
113    BeckerÀÇ <½ÇÀç¶õ ¹«¾ùÀΰ¡?>    ±è°ü¼® 3 2022-04-14
18:49:01
1154
112      PenroseÀÇ <½Ã°£ÀÇ ¼øȯ> (°­Ãß!) [u. 5/2023]  🌹    ±è°ü¼® 3 2022-04-14
18:49:01
1154
111  ÀϹݻó´ë¼º(GR) ÇнÀ¿¡ ´ëÇÏ¿©..    ±è°ü¼® 1 2022-01-03
09:49:28
407
110  HTML(+) ¸®ºä/ȨÆäÀÌÁö ¿î¿ë^^  [1]  ±è°ü¼® 1 2021-11-08
16:52:09
270
109  PeeblesÀÇ Cosmology's Century (2020)    ±è°ü¼® 1 2021-08-16
21:08:03
478
108  <ÇѱÇÀ¸·Î ÃæºÐÇÑ ¿ìÁÖ·Ð> ¿Ü  ✅    ±è°ü¼® 5 2021-06-06
13:38:14
2341
107    RovelliÀÇ <º¸ÀÌ´Â ¼¼»óÀº ½ÇÀç°¡ ¾Æ´Ï´Ù>    ±è°ü¼® 5 2021-06-06
13:38:14
2341
106      SmolinÀÇ <¾çÀÚ Áß·ÂÀÇ ¼¼°¡Áö ±æ>    ±è°ü¼® 5 2021-06-06
13:38:14
2341
105        SusskindÀÇ <¿ìÁÖÀÇ Ç³°æ> (°­Ãß!)  🌹    ±è°ü¼® 5 2021-06-06
13:38:14
2341
104          ´ëÁßÀû ¿ìÁÖ·Ð Ãßõ¼­ ¸ñ·Ï [u. 9/2021]  [1]  ±è°ü¼® 5 2021-06-06
13:38:14
2341
103  Zel'dovich's Relativistic Astrophysics  ✅    ±è°ü¼® 1 2021-04-01
08:16:42
1373
102  Dirac Equation and Antimatter    ±è°ü¼® 1 2021-03-15
12:49:45
616
101  11/30 žç ÈæÁ¡ sunspots  ✅    ±è°ü¼® 2 2020-11-30
16:14:27
1055
100    Coronado PST ÅÂ¾ç »çÁø^^    ±è°ü¼® 2 2020-11-30
16:14:27
1055
99  Linde's Inflationary Cosmology [u. 1/2021]    ±è°ü¼® 1 2020-11-06
09:19:06
922
98  The Schrödinger Equation (7) Harmonic Oscillator  ✅    ±è°ü¼® 1 2020-09-17
21:43:31
2736
97  Çö´ë ¿ìÁÖ·ÐÀÇ ¸íÀú WeinbergÀÇ <ÃÖÃÊÀÇ 3ºÐ>  ✅    ±è°ü¼® 3 2020-08-09
11:37:44
1525
96    ¹°¸®Çеµ¸¦ À§ÇÑ Çö´ë ¿ìÁַм­´Â?    ±è°ü¼® 3 2020-08-09
11:37:44
1525
95      Çö´ë ¿ìÁÖ·ÐÀÇ ÃÖ°í, ÃÖ½Å, °íÀü¼­.. [u. 10/2024]   [1]  ±è°ü¼® 3 2020-08-09
11:37:44
1525
94   Mathematical Cosmology 1. Overview  🔵    ±è°ü¼® 6 2020-06-07
16:23:00
5857
93    Mathematical Cosmology 2. FRW geometry     ±è°ü¼® 6 2020-06-07
16:23:00
5857
92      Mathematical Cosmology 3. Cosmological models I    ±è°ü¼® 6 2020-06-07
16:23:00
5857
91        Mathematical Cosmology 4. Cosmological models II    ±è°ü¼® 6 2020-06-07
16:23:00
5857

    ¸ñ·Ïº¸±â   ÀÌÀüÆäÀÌÁö   ´ÙÀ½ÆäÀÌÁö     ±Û¾²±â [1] 2 [3][4][5]
    

Copyright 1999-2025 Zeroboard / skin by zero & Artech