±âº» ÆäÀÌÁö Æ÷Æ®Æú¸®¿À ´ëÇѹα¹ÀÇ ÀüÅë°ÇÃà Áß±¹°ú ÀϺ»ÀÇ ÀüÅë°ÇÃà ¼­À¯·´°ú ¹Ì±¹ÀÇ °ÇÃà ±¹¿ª û¿À°æ Çö´ë ¿ìÁÖ·Ð ´ëÇѹα¹ÀÇ »êdz°æ ¹éµÎ´ë°£ Á¾ÁÖ»êÇà ³×ÆÈ È÷¸»¶ó¾ß Æ®·¹Å· ¸ùºí¶û Áö¿ª Æ®·¹Å· ¿ä¼¼¹ÌƼ ij³â µî Ƽº£Æ® ½ÇÅ©·Îµå ¾ß»ý »ý¹° Æijë¶ó¸¶»çÁø °¶·¯¸® Ŭ·¡½Ä ·¹ÄÚµå °¶·¯¸® AT Æ÷·³ Æ®·¹Å· Á¤º¸ ¸µÅ©


 ·Î±×ÀÎ  È¸¿ø°¡ÀÔ

Ư¼ö»ó´ë¼º(SR) I-1. °£°Ý; ½Ã°£ ÆØâ  🔴
    ±è°ü¼®  2018-06-29 07:54:00, Á¶È¸¼ö : 898
- Download #1 : fig_light_cones.jpg (71.7 KB), Download : 1



Ư¼ö»ó´ë¼º ¿ø¸®(Principles of Special Relativity)

<ÀüÁ¦ ¹× ¿ë¾î>

Ư¼ö ¹×  ÀÏ¹Ý »ó´ë¼º À̷п¡ °üÇÑ ±ÛÀº Âü°í¹®ÇåÀÇ ¹Ì±¹ ´ëÇб³Àç Hartle(2003)À» ±âº»À¸·Î ÇϵÇ, Âü°í¼­ Landau-Lifshitz(1939/1980)·Î º¸¿ÏÇÏ·Á°í ÇÕ´Ï´Ù.
James Hartle(1939~)µµ ÈǸ¢ÇÑ ÇÐÀÚÀÌÁö¸¸ Lev Landau(1908-1968)´Â ·¯½Ã¾ÆÀÇ ÃµÀç °úÇÐÀڷμ­ [E. Lifshitz(1919-1985)´Â Á¦ÀÚ] ¿øÀüÀ» ±â¼úÇÑ °ÍÀÔ´Ï´Ù.
Hartle Ã¥Àº ÇкλýÀ» À§ÇÑ ±³°ú¼­·Î Ãâ¹ßÇÏ¿´À¸³ª Landau-LifshitzÀÇ Ã¥Àº Àü 10±ÇÀÇ ¿ªÇÐ(mechanics) Á¦2±ÇÀ¸·Î¼­ ´ëÇпø»ýÀ» À§ÇÑ ´õ ³ôÀº ¼öÁØÀÔ´Ï´Ù.
´ëÇÐ ¼öÁØÀÇ 'ÃÖ´ëÇÑÀÇ °£°á¼º°ú ¼öÇÐÀû ¾ö¹Ð¼º(rigor)À» ÁöÇâÇϴ ª°í Á¤È®ÇÑ »ó´ë¼ºÀÌ·Ð Çؼ³'À» ¸ñÇ¥·Î ÇÏ¿© ¼ö½Ã ¾÷µ¥ÀÌÆ®ÇÏ°Ú½À´Ï´Ù~

⦁ °è(frame): ¿©±â¼­´Â ÁÂÇ¥ ½Ã½ºÅÛ(a system of coordinate)°ú µ¿ÀǾî
⦁ ±âÁØ°è(reference frame): °ø°£(space)¿¡¼­ ÀÔÀÚ(particle)ÀÇ À§Ä¡¿Í ½Ã°£À» ¾Ë¸®´Â ½Ã°è(clock)¸¦ °®´Â °è(frame)
⦁ °ü¼º°è(inertial frame): ¿Ü·Â(external force)¸¦ ¹ÞÁö ¾Ê°í »ó´ëÀûÀÎ µî¼ÓÀ¸·Î(uniformly) ¿òÁ÷ÀÌ´Â ±âÁØ°è(reference frame)
⦁ ¸Æ½ºÀ£ÀÇ ¹ýÄ¢°ú ¸¶ÀÌÄý¼-¸ô¸®(Michelson-Morley) ½ÇÇè¿¡ µû¶ó ¸ðµç °ü¼º°è¿¡¼­ ±¤¼Ó c ≅ 2.998*1010cm/s.
⦁ ´ëºÎºÐÀÇ »ó´ë¼ºÀÌ·ÐÀÇ µµÃâÀº »ç°í ½ÇÇè(thought experiment)[Gedankenexperiment]¿¡ ÀÇÇÔ.

1. »óÈ£ÀÛ¿ëÀÇ ÀüÆÄ ¼Óµµ(Velocity of propagation of interaction)

»ó´ë¼º¿ø¸®(principle of relativity)¶õ ¸ðµç °ü¼º°è(inertial frame)¿¡¼­ ÀÚ¿¬ÀÇ ¹ýÄ¢(laws of nature)ÀÇ µ¿ÀϼºÀ¸·Î, ÀÌ´Â ½ÇÇè¿¡ ÀÇÇØ Áõ¸íµÇ¾ú½À´Ï´Ù.
±×·¯¸é °è(frame)¾È¿¡¼­ ¹°Áú ÀÔÀÚµé(material particles)ÀÇ »óÈ£ÀÛ¿ë(interaction)ÀÌ ÀÖ´Ù°í ÇßÀ» ¶§ ÀüÆÄ ¼Óµµ(velocity of progaation)´Â °ú¿¬ ¾î¶°ÇÒ±î¿ä?
°¥¸±·¹¿ÀÀÇ »ó´ë¼º ¿ø¸®(principal of rellaativity of  Galileo)¿¡¼­´Â ¹«ÇÑ ¼Óµµ(infinite velocity)·Î ÀüÆÄµÈ´Ù°í °¡Á¤ÇÏ¿´¾úÀ¸³ª, ½ÇÁ¦ÀÇ »óÈ£ ÀÛ¿ëÀº ...
¾ÆÀν´Å¸ÀÎÀÇ »ó´ë¼º ¿ø¸®(principal of relativity of Einstein)¿¡ ÀÇÇØ ±¤¼ÓÀ¸·Î ÀüÆĵÊÀÌ ¹àÇôÁ³½À´Ï´Ù!


¿ì¸®´Â º¸Åë »ó´ë¼ºÀ̷п¡ ÀÇÇÑ ¿ªÇÐ(mechanics)À» ´ºÅæ ¿ªÇÐ(Newtonian mechanics)°ú ´ëºñÇØ »ó´ë·ÐÀû ¿ªÇÐ(relativisic mechanics)À̶ó ºÎ¸¨´Ï´Ù.
À§ ±×¸²fig.1.°ú °°ÀÌ xyz ÁÂÇ¥°è¸¦ °¡Áø K °ü¼º°è¿Í ÀÌ¿Í xÃà ¹æÇâÀ¸·Î ÀÏÁ¤ÇÑ ¼Óµµ·Î À̵¿ÇÏ´Â x'y'z' ÁÂÇ¥°èÀÇ K¡¯ °ü¼º°è¸¦ »ý°¢ÇØ º¸±â·Î ÇսôÙ.
K¡¯ °ü¼º°èÀÇ A ÁöÁ¡¿¡¼­ ½ÅÈ£(signal)°¡ ¾çÂÊÀ¸·Î Ãâ¹ßÇß´Ù°í °¡Á¤ÇÏ¸é ¸ðµç °ü¼º°è¿¡¼­ ±¤¼ÓÀº  cÀ̹ǷΠ°°Àº °Å¸®ÀÇ B¿Í C¿¡ µ¿½Ã¿¡ µµ´ÞÇÕ´Ï´Ù.
ÇÏÁö¸¸ K °ü¼º°è¿¡ ÀÖ´Â °üÂûÀÚ(observer)¿¡°Ô´Â B´Â A¸¦ ÇâÇؼ­ °¡°í C´Â A¿¡¼­ ¸Ö¾îÁö¹Ç·Î B¿¡ ¸ÕÀú µµ´ÞÇÏ°í C¿¡´Â ³ªÁß¿¡ µµ´ÞÇÏ°Ô º¸ÀÔ´Ï´Ù.
ÇÑ °ü¼º°è¿¡¼­ µ¿½ÃÀÎ »ç°ÇÀÌ »ó´ëÀû µî¼ÓÀ¸·Î ¿òÁ÷ÀÌ´Â ´Ù¸¥ °ü¼º°è¿¡¼­´Â µ¿½ÃÀÎ »ç°ÇÀÌ ¾Æ´Ï¹Ç·Î ´ºÅæÀÇ ½Ã°£ °³³äÀº Æó±âÇØ¾ß ÇÕ´Ï´Ù.
¿¹¸¦ µéÀÚ¸é žçÀÇ ÇÑ »ç°ÇÀÌ ¾ÆÀ̽´Å¸ÀÎ »ó´ë¼ºÀ̷п¡¼­´Â ±¤¼Ó °Å¸®ÀÎ ¾à 8ºÐ µÚ¿¡ ÀÛ¿ëÇÏÁö¸¸ °¥¸±·¹¿ÀÀÇ »ó´ë¼º¿¡¼­´Â Áï½Ã ÀÛ¿ëÇÑ´Ù´Â Â÷ÀÌÀÔ´Ï´Ù.
ÇÏÁö¸¸ °ü¼º°è°£ °Å¸®³ª ¼Óµµ°¡ ±¤¼Ó c¿¡ ºñ±³ÇØ Å©Áö ¾ÊÀ» ¶§¿¡´Â ½Ç¿ëÀû ±Ù»ç½ÄÀÎ ´ºÅæÀÇ ¿ªÇÐÀ» ±×´ë·Î Àû¿ëÇÒ ¼ö ÀÖ´Â °ÍÀÔ´Ï´Ù. [Landau-Lifshitz p.3]

2. °£°Ý(Intervals)

»ç°Ç(event)Àº ¹ß»ýÇÑ ½Ã°£°ú Àå¼Ò·Î ±â¼úµÇ¹Ç·Î °¡»óÀÇ 4Â÷¿ø °ø°£À» 3 °ø°£Ãà(three space axis)[x]¿Í ½Ã°£Ãà(time axis)[t]·Î ÆíÀÇ»ó ÀÚÁÖ Ç¥±âÇé´Ï´Ù.
±× ½Ã°ø°£¼Ó¿¡¼­  »ç°Ç(events)µéÀº Á¡À¸·Î Ç¥±âÇÏ¿© ¼¼°èÁ¡(world points)À̶ó°í ºÎ¸£¸ç  ±× Á¡ÀÇ ¿òÁ÷ÀÓÀ» ¼¼°è¼±(world line)À̶ó°í ºÎ¸¨´Ï´Ù.
ÀÌÁ¦ À§ ±×¸²ÀÇ K¿Í K¡¯ °ü¼º°è·Î ±¤¼Ó ºÒº¯ÀÇ ¿ø¸®(the principle of the invariance of the velosity of light)ÀÇ Àû¿ëÀ» ¼öÇÐÀûÀ¸·Î »ìÆì º¸°Ú½À´Ï´Ù.
°ü¼º°è KÀÇ ½Ã°£À» t, °ü¼º°è K¡¯ÀÇ ½Ã°£À» t¡¯¶ó ÇÏ°í »ç°ÇÀÇ °£°Ý(interval)À» ∆s¶ó°í ÇÏ¸é ´ÙÀ½ÀÇ '°£°Ý ºÒº¯(invariance of intervals) ½Ä'ÀÌ ¼º¸³ÇÕ´Ï´Ù.
 
   ½Ã°è(clock)´Â L°Å¸®ÀÇ A°Å¿ï(mirror)°ú  B°Å¿ï»çÀ̸¦ ¿Õº¹ÇÏ´Â ºû ÆÞ½º(light pulse)ÀÇ ½Ã°£ °£°Ý(time interval) : ∆t = 2L/c À» ÃøÁ¤ÇÔ.
   °ü¼º°è K¿¡¼­ ∆t = 2L/c,  ∆x = ∆y = ∆z = 0 ÀÏ ¶§, xÃà ¹æÇâ µî¼Ó V·Î À̵¿ÇÏ´Â °ü¼º°è K'ÀÇ ∆t' = (2/c) *¡î[L©÷ +( ∆x'/2)©÷],  ∆x' = V∆t',   ∆y' = ∆z' = 0
   -(c∆t')©÷ + (∆x')©÷ = - 4[L©÷ + (∆x'/2 )©÷ ] + (∆x')©÷ = -4L©÷ = -(c∆t)©÷  <-  ∆x = ∆y = ∆z = 0,  ∆y' = ∆z' = 0 ¸¦ ¾çº¯¿¡ ´õÇÏ°í Á¤¸®Çϸé,
   -(c∆t)©÷ + (∆x)©÷ + (∆y)©÷ + (∆z)©÷ = -(c∆t')©÷ + (∆x')©÷ + (∆y')©÷ + (∆z')©÷ = -4L©÷ <- ¸ðµç °ü¼º°èÀÇ ÇÑ ºÒº¯·®(an invariant)À» ½Äº°ÇÏ´Â ¿­¼è.
 
  (∆s)©÷ ¡Õ -(c∆t)©÷ + (∆x)©÷ + (∆y)©÷ + (∆z)©÷        <2-1a>
  ds©÷ = -c©÷dt©÷ + dx©÷ + dy©÷ + dz©÷                     <2-1b> <-  ¹ÌºÐ ¹öÀü
  
3. °íÀ¯½Ã°£(Proper Time)°ú ½Ã°£ ÆØâ(Time Dilation)

  (∆s)©÷ > 0  °ø°£²Ã ºÐ¸®(spacelike seperated)
  (∆s)©÷ = 0  ³Înull ºÐ¸®(null seperated or lightlike seperated)
  (∆s)©÷ < 0  ½Ã°£²Ã ºÐ¸®(timelike seperted)


ds©÷ = -c©÷dt©÷ + dx©÷ + dy©÷ + dz©÷       <2-1c> <-  HartleÃ¥ÀÌ interval·Î »ç¿ëÇÔ. * default
ds©÷ =  c©÷dt©÷ - dx©÷ - dy©÷ - dz©÷        <2-1d>  <- Landau-LifshitzÃ¥ÀÌ interval·Î »ç¿ëÇÔ.

À§ ±×¸²Ã³·³ ³Înull ºÐ¸®µÈ Á¡µéÀÌ ±¤Ãß[ÎÃõÞ-ºû¿ø»Ô](light cone)°¡ µÇ¸ç Áú·®À» °¡Áø ¹°Ã¼´Â ±¤Ãß ³»ºÎÀÇ.½Ã°£²Ã(timelike) ¼¼°è¼±À» µû¶ó ¿òÁ÷ÀÔ´Ï´Ù.
¿©±â¼­ ½Ã°è(clock)´Â ½Ã°£²Ã °Å¸®(timelike distance)¸¦ Àç´Â µµ±¸(device)ÀÌ°í, ÀÚ(ruler)´Â °ø°£²Ã °Å¸®(spacelike distance)¸¦ Àç´Â µµ±¸ÀÔ´Ï´Ù.

½Ã°£¼º ¿µ¿ª¾ÈÀÇ °î¼±(curve)À» µû¶ó ¿òÁ÷ÀÌ´Â °Å¸®ÀÎ ¥ó´Â ½ÇÁ¦ ½Ã°£ÀÌ¸ç °íÀ¯½Ã°£(proper time)À̶ó ÁöĪÇÕ´Ï´Ù. [Hartle p.60-63]
 
 d¥ó©÷ ¡Õ - ds©÷/c©÷                             <3-1> 

±¤Ãß-ºû¿ø»Ô ³»ºÎÀÇ ½Ã°£¼º ¿µ¿ª¾ÈÀÇ ¼¼°è¼±world line »óÀÇ µÎÁ¡ A¿Í B°£ °íÀ¯½Ã°£Àº ¥óAB¸¦ À§ÀÇ µÎ ½Ä¿¡ ÀÇÇؼ­ °è»êÇϸé...
 ¥óAB = ¡ò(trom A to B)d¥ó = ¡ò(trom A to B) ¡î {dt©÷-(dx©÷+dy©÷+dz©÷)/c©÷} =  ¡ò(trom A to B) dt ¡î {1-(dx©÷+dy©÷+dz©÷)/dt©÷c©÷} = ¡ò(trom A to B) dt ¡î (1-V©÷/c©÷)

 d¥ó = dt ¡î (1 - V©÷/c©÷)                      <3-2>   <- °íÀ¯½Ã°£ÀÇ ÆØâ(proper time dilation)

Á¤ÁöÇÑ °ü¼º°è K¿Í V·Î ¿òÁ÷ÀÌ´Â °ü¼º°è K'¿¡ °¢°¢ ¼ÓÇÑ ½Ã°èµéclocksÀ» ÅëÇØ dt'°¡ ¹«¾ùÀ» ÀǹÌÇϴ°¡¸¦ ¾Ë¾Æº¸±â·Î ÇսôÙ. [Landau p.7-9]
°ü¼º°è K'¿¡ ÀÖ´Â ½Ã°è´Â ½Ã°£°£°Ýl dt µ¿¾È ¡î (dx©÷ + dy©÷ + dz©÷) °Å¸®¸¦ À̵¿ÇÏ¸ç ±× °ü¼º°è ³»¿¡¼­ Á¤ÁöÇØ ÀÖÀ¸¹Ç·Î dx' = dy' = dz' = 0 ÀÔ´Ï´Ù.

ds©÷ = -c©÷dt©÷ + dx©÷ + dy©÷ + dz©÷ =-c©÷dt'©÷
dt' = dt ¡î [1- (dx©÷ + dy©÷ + dz©÷ )/c©÷dt©÷],  (dx©÷ + dy©÷ + dz©÷ )/dt©÷ = V©÷

 dt' = ds/c = dt ¡î (1 - V©÷/c©÷)        <3-3>   <- °ü¼º°è K'¿¡ ¼ÓÇÑ ½Ã°èÀÇ ½Ã°£ ÆØâ(time dilation)

Âü°í¹®Çå Landau, L.D & Lifshitz, E.M. The Classical Theory of Fields (fourth edition, Butterworth-Heinemann 1986/1938)
               Hartle, J.B. Gravity: An Introduction to Einstein¡¯s General Relativity (Addison-Wesley 2003)

p.s. À§ Landau-Lifshitz (1962)´Â Hartle (2003)ÀÇ Âü°í¹®Çå Áß Ã¹¹ø°·Î¼­ ±× ¾Æ·¡¿¡ ´ÙÀ½ÀÇ ÄÚ¸àÆ®°¡ ÀÖÀ½.
      'The 150 pages of the text devoted to general relativity give a concise introduction to the basics of the subject
       in the clear and straightfoward Landau and Lifshitz style, although few application are covered in any depth.'
       Landau, L. D.¿Í  Lifshitz, E.M.ÀÇ »ó±â Ã¥Àº 1939³â Russian ÃÊÆǺ»ÀÌ·¡ ·¯½Ã¾Æ 7ÆÇÀÌ Lifshitz¿¡ ÀÇÇØ ÃâÆǵǰí,
      1951³â, 1962³â, 1971³â, 1980³â ³×¹ø ¿µ¾î ¹ø¿ªÆÇ(¿ªÀÚ´Â ¸ðµÎ M. Hamermesh)ÀÌ ³ª¿ÔÀ½.


Name
Spamfree

     ¿©±â¸¦ Ŭ¸¯ÇØ ÁÖ¼¼¿ä.

Password
Comment

  ´ä±Û¾²±â   ¸ñ·Ïº¸±â
¹øÈ£ Á¦               ¸ñ À̸§ ¿¬°ü ³¯Â¥ Á¶È¸
99  Linde's Inflationary Cosmology [u. 1/2021]    ±è°ü¼® 1 2020-11-06
09:19:06
539
98  The Schrödinger Equation [¿Ï·á] (7) Harmonic Oscillator  ✅    ±è°ü¼® 1 2020-09-17
21:43:31
2693
97  ¿ìÁÖ·ÐÀÇ ¸íÀú WeinbergÀÇ <ÃÖÃÊÀÇ 3ºÐ>  ✅    ±è°ü¼® 3 2020-08-09
11:37:44
1352
96    ¹°¸®Çеµ¸¦ À§ÇÑ ¿ìÁַм­´Â?    ±è°ü¼® 3 2020-08-09
11:37:44
1352
95      ¿ìÁÖ·ÐÀÇ ÃÖ°í, ÃÖ½Å, °íÀü¼­..    ±è°ü¼® 3 2020-08-09
11:37:44
1352
94   Mathematical Cosmology 1. Overview  🔵    ±è°ü¼® 6 2020-06-07
16:23:00
4558
93    Mathematical Cosmology 2. FRW geometry     ±è°ü¼® 6 2020-06-07
16:23:00
4558
92      Mathematical Cosmology 3. Cosmological models I    ±è°ü¼® 6 2020-06-07
16:23:00
4558
91        Mathematical Cosmology 4. Cosmological models II    ±è°ü¼® 6 2020-06-07
16:23:00
4558
90          Mathematical Cosmology 5. Inflationary cosmology    ±è°ü¼® 6 2020-06-07
16:23:00
4558
89            Mathematical Cosmology 6. Perturbations    ±è°ü¼® 6 2020-06-07
16:23:00
4558
88  Hobson Efstathiou Lasenby GR 11a. Schwartzschild ºí·¢È¦  🔴  [2]  ±è°ü¼® 3 2020-05-13
13:44:21
17528
87    Hobson et al. GR 11b. Áß·ÂÀÇ ºØ±«, ºí·¢È¦ Çü¼º    ±è°ü¼® 3 2020-05-13
13:44:21
17528
86      Hobson et al. GR 11c. ¿úȦ, Hawking È¿°ú    ±è°ü¼® 3 2020-05-13
13:44:21
17528
85  Hobson Efstathiou Lasenby GR 19. ÀϹݻó´ë¼ºÀÇ º¯ºÐÀû Á¢±Ù    ±è°ü¼® 1 2020-04-16
07:13:39
540
84  Dirac's GR [¿Ï·á] 35. ¿ìÁÖÇ× [u. 3/2020]   🔵  [2]  ±è°ü¼® 1 2020-01-22
08:59:01
3633
83  1/20 ±º¾÷¸®ÀÇ Orion ¼º¿î^^    ±è°ü¼® 1 2020-01-20
23:28:21
430
82  º¤ÅÍ¿Í ÅÙ¼­ [¿Ï·á] 6. ÅÙ¼­ ÀÀ¿ë [u. 1/2020]    ±è°ü¼® 1 2020-01-01
19:32:21
517
81  2019³â ³ëº§¹°¸®Çлó - PeeblesÀÇ ¹°¸®Àû ¿ìÁַР  ✅    ±è°ü¼® 1 2019-10-14
19:30:49
1190
80  ÀϹݻó´ë¼º(GR) 1. µî°¡¿ø¸®; Á߷°ú °î·ü   🔵    ±è°ü¼® 5 2019-09-06
09:38:00
4300
79    ÀϹݻó´ë¼º 2. Newton Á߷·РÀç°ËÅä    ±è°ü¼® 5 2019-09-06
09:38:00
4300
78      ÀϹݻó´ë¼º 3. Ư¼ö»ó´ë¼º; ÃøÁö¼±    ±è°ü¼® 5 2019-09-06
09:38:00
4300
77        ÀϹݻó´ë¼º 4. Einstein Àå¹æÁ¤½Ä ***    ±è°ü¼® 5 2019-09-06
09:38:00
4300
76          ÀϹݻó´ë¼º 5. Schwarzschild ÇØ    ±è°ü¼® 5 2019-09-06
09:38:00
4300
75  ¹ÌºÐ±âÇÏÇÐ(DG) 1. °î¼±; Gauss °î·ü; °î¸é  🔵    ±è°ü¼® 4 2019-06-16
16:55:58
4310
74    ¹ÌºÐ±âÇÏÇÐ 2. Á¦Àϱ⺻Çü½Ä; Á¦À̱⺻Çü½Ä    ±è°ü¼® 4 2019-06-16
16:55:58
4310
73      ¹ÌºÐ±âÇÏÇÐ 3. Gauss °î·ü II; ÃøÁö¼± [u. 12/2019]  [1]  ±è°ü¼® 4 2019-06-16
16:55:58
4310
72        ¹ÌºÐ±âÇÏÇÐ 4. Riemann °î·üÅÙ¼­; ´Ù¾çü    ±è°ü¼® 4 2019-06-16
16:55:58
4310
71  5/28 ±º¾÷¸®ÀÇ ÀºÇϼö^^    ±è°ü¼® 1 2019-05-30
01:20:31
799
70  ÅÙ¼­(tensor) Çؼ® I-1. Dyad¿Í ÅÙ¼­ÀÇ ¿¬»ê  🔵    ±è°ü¼® 5 2019-07-02
16:01:21
5731
69    ÅÙ¼­ Çؼ® I-2. ÅÙ¼­ ¹ÌÀûºÐ; ÁÂÇ¥º¯È¯ I    ±è°ü¼® 5 2019-07-02
16:01:21
5731
68      ÅÙ¼­ Çؼ® II-1. ÀÏ¹Ý ÁÂÇ¥°è ÅÙ¼­ÀÇ ¿¬»ê    ±è°ü¼® 5 2019-07-02
16:01:21
5731
67        ÅÙ¼­ Çؼ® II-2. ÁÂÇ¥º¯È¯ II; ÀÏ¹Ý ÁÂÇ¥°è ¹ÌºÐ    ±è°ü¼® 5 2019-07-02
16:01:21
5731
66          ÅÙ¼­ Çؼ® II-3. µ¿ÀÏ ÀûºÐ; ¹ÌºÐ±âÇÏÇÐ    ±è°ü¼® 5 2019-07-02
16:01:21
5731
65  VerlindeÀÇ <Á߷°ú ¿ìÁÖÀÇ ¾ÏÈæ¿¡ °üÇÑ »õ °ßÇØ>^^    ±è°ü¼® 1 2019-02-03
21:27:44
618
64  »ó´ë¼º ÀÌ·Ð(SR/GR)ÀÇ ÇнÀ °úÁ¤    ±è°ü¼® 1 2018-07-15
15:31:25
628

    ¸ñ·Ïº¸±â   ÀÌÀüÆäÀÌÁö   ´ÙÀ½ÆäÀÌÁö     ±Û¾²±â [1] 2 [3][4]
    

Copyright 1999-2024 Zeroboard / skin by zero & Artech