±è°ü¼®
|
2019-06-03 21:39:43, Á¶È¸¼ö : 875 |
- Download #1 : Tesor_II_1.jpg (49.2 KB), Download : 1
II-1 ÀÏ¹Ý ÁÂÇ¥°è¿Í Tensor
a) 11.1 General coordinate(ÀÏ¹Ý ÁÂÇ¥°è) <- ±×¸² 11.4 ÂüÁ¶
∘ Cartesian coordinates(ÁÂÇ¥°è): 𝐱1= x, 𝐱2= y, 𝐱3= z, 𝐮 = 𝑢1𝐞1 + 𝑢2𝐞2 + 𝑢3𝐞3
∘ Cylindrical coordinates(¿øÅë ÁÂÇ¥°è): 𝜉1= 𝑟, ¥î2= 𝜃, 𝜉3= 𝑧, 𝐱1= 𝑟 cos𝜃, 𝐱2 = 𝑟 sin𝜃, x3 = 𝑧
∘ Sphrical coordinates(±¸ ÁÂÇ¥°è): 𝜉1= 𝜌, 𝜉2= 𝜃, 𝜉3= 𝜙, 𝐱1= 𝜌 sin𝜃 cos𝜙, 𝐱2= 𝜌 sin𝜃 sin𝜙, 𝐱3= 𝜌 cos𝜃
∘ Curviinear coordinates(°î¼± ÁÂÇ¥°è) ¡æ general coordinate(ÀÏ¹Ý ÁÂÇ¥°è)·Î ÁöĪµÇ±âµµ ÇÔ.
´Ù¸¥ ÁÂÇ¥°èµé°ú ´Þ¸® ƯÁ¤ÀÇ reference point(±âÁØÁ¡)ÀÌ ¾øÀ¸¸ç Cartesian ÁÂÇ¥°èÀÇ ¿øÁ¡¿¡ ´ëÇÑ »ó´ëÀûÀÎ À§Ä¡¿¡¼ Á¤ÇØÁý´Ï´Ù.
curvilinear ÁÂÇ¥°è´Â global coordinate(±¤¿ª ÁËÇ¥°è)ÀÎ Cartesian ÁÂÇ¥°è¿Í ´Þ¸® local coordinate(±¹¼Ò ÁÂÇ¥°è)¶ó°í ºÎ¸¨´Ï´Ù.
À§ ±×¸²¿¡¼ º¸µíÀÌ Cartesian ÁÂÇ¥°è¿¡¼ ÀÓÀÇ °Å¸®¸¸Å ¶³¾îÁø ÇÑÁ¡±îÁö¸¦ ÀÕ´Â vector¸¦ À§Ä¡ vector 𝐱 ¶ó°í Ç¥±âÇÕ´Ï´Ù.
ÀÌ Á¡¿¡¼ curvilinear ÁÂÇ¥°è´Â ÁÂÇ¥°èÀÇ components(¼ººÐ)¿¡ µû¸¥ °î¸éÀ» °¡Áö°Ô µË´Ï´Ù.
b) 11.2 ÀÏ¹Ý ÁÂÇ¥°è(°î¼± ÁÂÇ¥°è)¿¡¼ÀÇ Ç¥±â¹ý
∘ ÀÏ¹Ý ÁÂÇ¥°èÀÇ vector 𝐮 = 𝑢𝑖 𝐠𝑖 = 𝑢𝑖 𝐠𝑖 <- ¡Ø ÀÏ¹Ý tensorÀÇ Áߺ¹Áö¼ö´Â ¹Ýµå½Ã À§¿Í ¾Æ·¡·Î ±³Â÷Çϵµ·Ï ÇØ¾ß ÇÕ´Ï´Ù. [11.2.2,5]
𝐮 = 𝑢𝑖 𝐠𝑖 = 𝑢1𝐠𝑖 + 𝑢2𝐠2 + 𝑢3𝐠3 <- 𝑢𝑖: contravariant component(¹Ýº¯ ¼ººÐ), 𝐠𝑖: natural basis(ÀÚ¿¬ ±âÀú) vector [11.2.3]
𝐮 = 𝑢𝑖 𝐠𝑖 = 𝑢1𝐠1 + 𝑢2𝐠2 + 𝑢3𝐠3 <- 𝑢𝑖: covariant component(°øº¯ ¼ººÐ), 𝐠𝑖: reciprocal basis(¿ª±âÀú) vector [11.2.4]
∘ 2Â÷ tensor Ç¥±â¹ý: ´ÙÀ½ÀÇ 4°¡Áö·Î Ç¥ÇöµÉ ¼ö ÀÖ½À´Ï´Ù.
𝐀 = 𝐴𝑖𝑗 𝐠𝑖 ⊗ 𝐠𝑗 = 𝐴𝑖𝑗 𝐠𝑖 ⊗ 𝐠𝑗 = 𝐴𝑖,𝑗 𝐠𝑖 ⊗ 𝐠𝑗 = 𝐴𝑖,𝑗 𝐠𝑖⊗ 𝐠𝑗 <- contravant(¹Ýº¯), covariant(°øº¯), mixed(È¥ÇÕ) ¼ººÐ [11.2.6-8]
c) 11.3 General(ÀϹÝ) tensorÀÇ ¼ºÁú
∘ Tanspose(ÀüÄ¡):
symmetric tensor 𝐀T = (𝐴𝑖𝑗)T 𝐠𝑖 ⊗ 𝐠j = 𝐴𝑗𝑖 𝐠𝑖 ⊗ 𝐠j = 𝐴𝑖𝑗 𝐠j ⊗ 𝐠𝑖, (𝐴𝑖𝑗)T = 𝐴𝑗𝑖, (𝐴𝑖𝑗)T = 𝐴𝑗𝑖, (𝐴𝑖,j)T = 𝐴j,𝑖 [11.3.1,2]
symmetric tensor: If 𝐀T = 𝐀, then 𝐀: sym𝐀 <- square matrix
skew-symetric(¹Ý´ëĪ) tensor: If 𝐀T = -𝐀, then 𝐀: skew𝐀 <- square matrix [11.3.3]
𝐀 = sym𝐀 + skew𝐀, sym𝐀 = 1/2 (𝐀 + 𝐀T), skew𝐀 = 1/2 (𝐀 - 𝐀T) <- Toeplitz decomposition 'Symmetric matrix'[link]
∘ µ¡¼À°ú »¬¼À: µ¿ÀÏÇÑ ±âÀú(basis)¸¦ °®´Â ¼ººÐ(component) °£¿¡ °¡´É
ex1) 𝐀 - 𝐁 = (𝐴𝑖𝑗 - 𝐵𝑖𝑗) 𝐠𝑖 ⊗ 𝐠𝑗 = 𝑇𝑖𝑗 = 𝐓, ex2) 𝐀 - 𝐁 = (𝐴𝑖,𝑗 - 𝐵𝑖,𝑗) 𝐠𝑖 ⊗ 𝐠𝑗 = 𝑇𝑖,𝑗 = 𝐓 [11.4.4,5]
d) 11.5 General tensorÀÇ À¯¿ë¼º: ¡Ø ÁÂÇ¥°è¿¡ ¹«°üÇÑ ¼ö½Ä Ç¥ÇöÀÌ °¡´ÉÇϹǷÎ, Einstein¿¡ ÀÇÇØ ÀÏ¹Ý »ó´ë¼º ¿ø¸®(GR)¿¡ È°¿ëµÇ¾úÀ½.
Cartesian ÁÂÇ¥°è¿¡¼: ex) velocity 𝐯 = 𝑣𝑖𝐞𝑖, 𝑣𝑖 = 𝑎𝑖𝑡, 𝑣𝑖𝐞𝑖 = 𝑎𝑖𝐞𝑖𝑡 ¡Å 𝐯 = 𝐚𝑡 <- 𝐚: acceleration, 𝑡: time [11.5.1,4]
General ÁÂÇ¥°è¿¡¼: ex) velocity 𝐯 = 𝑣𝑖𝐠𝑖, 𝑣𝑖 = 𝑎𝑖𝑡, 𝑣𝑖𝐠𝑖 = 𝑎𝑖𝐠𝑖𝑡 ¡Å 𝐯 = 𝐚𝑡 <- 𝐚: acceleration, 𝑡: time [11.5.2,5]
II-2 ÀÏ¹Ý ÁÂÇ¥°è¿¡¼ÀÇ ¿¬»ê
a) 12.1 Inner product(³»Àû)
∘ Metric tensor: 𝑔𝑖𝑗 ¡Õ 𝐠𝑖 ∙ 𝐠𝑗; If 𝐚 ∙ 𝐛 = 𝑎𝑖𝑏𝑗 𝐠𝑖 ∙ 𝐠𝑗, then 𝐚 ∙ 𝐛 = 𝑎𝑖𝑏𝑗 𝑔𝑖𝑗 [12.1.6]
metric tensor [𝑔𝑖𝑗] =
⌈ 𝑔11 𝑔12 𝑔13 ⌉
¦ 𝑔21 𝑔22 𝑔23¦ (𝑖,𝑗 = 1,2,3) [12.1.7]
⌊ 𝑔31 𝑔32 𝑔33 ⌋
∘ Kronecker delta: 𝛿𝑖𝑗 ¡Õ 𝐠𝑖 ∙ 𝐠𝑗 = {0 (𝑖¡Á𝑗); 1 (𝑖=𝑗)}; If 𝐚 ∙ 𝐛 = 𝑎𝑖𝑏𝑗 𝐠𝑖 ∙ 𝐠j, then 𝐚 ∙ 𝐛 = 𝑎𝑖𝑏𝑗 𝛿𝑖𝑗 = 𝑎𝑖𝑏i <- index ±³È¯ (j¡æi of 𝑏) [12.1.11,12]
∘ Reciprocal(¿ª) metric tensor: 𝑔𝑖𝑗 ¡Õ 𝐠𝑖 ∙ 𝐠𝑗; If 𝐚 ∙ 𝐛 = 𝑎𝑖𝑏𝑗 𝐠𝑖 ∙ 𝐠𝑗, then 𝐚 ∙ 𝐛 = 𝑎𝑖𝑏j 𝑔𝑖𝑗 [12.1.13,14]
∘ Identity(´ÜÀ§) tensor: 𝐈 = 𝛿𝑖𝑗 𝐠𝑖 ⊗ 𝐠𝑗 = 𝐠𝑖 ⊗ 𝐠𝑖, 𝐈 = 𝐈T = 𝛿𝑗𝑖 𝐠𝑖 ⊗ 𝐠𝑗 = 𝐠𝑗 ⊗ 𝐠𝑗 ¡Å 𝐈 = 𝐠𝑖 ⊗ 𝐠𝑖 = 𝐠𝑖 ⊗ 𝐠𝑖 [12.1.15-17]
∘ Index ±âÈ£∙À§Ä¡ ¹Ù²Ù±â: ¡Ø metric tensor/reciprocal metric tensor´Â ±ÙÁ¢ÇØ ÀÖ´Â indexÀÇ ±âÈ£¿Í À§Ä¡¸¦ µ¿½Ã¿¡ ¹Ù²Þ.
𝑎𝑖𝑏𝑗 𝐠𝑖 ∙ 𝐠𝑗 = 𝑎𝑖𝑏𝑗 𝑔𝑖𝑗 = 𝑎𝑖𝑏i, 𝑎𝑖𝑏𝑗 𝐠𝑖 ∙ 𝐠𝑗 = 𝑎𝑖𝑏𝑗 𝛿𝑗𝑖 = 𝑎𝑖𝑏i, 𝑎𝑖𝑏𝑗 𝐠𝑖 ∙ 𝐠𝑗 = 𝑎𝑖𝑏𝑗 𝛿𝑖𝑗 = 𝑎𝑖𝑏𝑖, 𝑎𝑖𝑏𝑗 𝐠𝑖 ∙ 𝐠𝑗 = 𝑎𝑖𝑏𝑗 𝑔𝑖𝑗 = 𝑎𝑖𝑏𝑖, 𝐚 ∙ 𝐛 = 𝑎𝑖𝑏𝑗 = 𝑎𝑖𝑏𝑗 [12.1.24-28]
b) 12.2 Inner product(³»Àû) ÀÀ¿ë
∘ Basis(±âÀú) vectorÀÇ º¯È¯: 𝐠𝑖 = 𝑔𝑖𝑗 𝐠𝑗, 𝐠𝑖 = 𝑔𝑖𝑗 𝐠𝑗 [12.2.1,2]
∘ Metric tensor °ü°è½Ä: [𝑔𝑖𝑗] = [𝑔𝑖𝑗]-1 ¡ñ 𝑔𝑖𝑗 ∙ 𝑔𝑖𝑗 = 𝐠𝑖 ∙ 𝐠𝑗 ∙ 𝐠𝑖 ∙ 𝐠𝑗 = 𝐠𝑖 ∙ 𝐠𝑗 ∙ 𝐠𝑗 ∙ 𝐠𝑖 = 𝛿𝑖𝑗 𝛿𝑗𝑖 = 𝐈 [12.2.6-8]
∘ Trace(´ë°¢ÇÕ): tr𝐀 = 𝐀 : 𝐈 ¡Õ 𝐴𝑖,𝑖, tr(𝐀2) = tr(𝐀 ∙ 𝐀) = 𝐀 : 𝐀 = 𝐴𝑖,𝑗𝐴j,𝑖, (tr𝐀)2 = tr(𝐀) tr(𝐀) = 𝐴𝑖,𝑖 𝐴𝑗,𝑗 [12.2.12-14]
∘ VectorÀÇ Å©±â: 𝐧 = 𝑛𝑖 𝐠𝑖ÀÇ Å©±â ¡æ ¡«𝐧¡«= ¡î (𝐧 ∙ 𝐧) = ¡î (𝑛𝑖 𝐠𝑖 ∙ 𝑛𝑗 𝐠𝑗) = ¡î (𝑛𝑖𝑛𝑗𝑔𝑖𝑗) = ¡î (𝑛i𝑛𝑗), ¡Å ¡«𝐧¡«= ¡î (𝐧 ∙ 𝐧) = ¡î (𝑛i𝑛i) [12.2.16-18]
∘ Basis(±âÀú) vectorÀÇ Å©±â: ¡«𝐠𝑖¡«= ¡î (𝐠𝑖̄ ∙ 𝐠𝑖̄) = ¡î 𝑔𝑖̄𝑖̄, ¡«𝐠𝑖¡«= ¡î (𝐠𝑖̄ ∙ 𝐠𝑖̄) = ¡î 𝑔𝑖̄𝑖̄ <- ¡Ø 𝑖̄ : Áߺ¹Áö¼ö(dummy index) ¹ÌÀû¿ë Ç¥±âÀÓ. [12.2.19-24]
ex) ¿øÅë ÁÂÇ¥°èÀÇ ÀÚ¿¬ ±âÀú vector Å©±â¡«𝐠𝑖¡«¸¦ ±¸ÇϽÿÀ. ◂
¡«𝐠1¡«= ¡î (𝐠1 ∙ 𝐠1) = ¡î 𝑔11, ¡«𝐠2¡«= ¡î (𝐠2 ∙ 𝐠2) = ¡î 𝑔22, ¡«𝐠3¡«= ¡î (𝐠3 ∙ 𝐠3) = ¡î 𝑔33 ▮ [12.2.25]
c) 12.3 Tensor component(¼ººÐ) º¯È¯
∘ Tensor ¼ººÐ ±¸Çϱâ: ¿øÇÏ´Â ¹æÇâÀÇ basis vector¸¦ tensor¿¡ dot product¸¦ ÇÔ. <- 1Â÷ tensor: 1ȸ, 2Â÷ tensor: 2ȸ
ex1) 𝐮 ∙ 𝐠𝑗 = 𝑢𝑖 𝐠𝑖 ∙ 𝐠𝑗 = 𝑢𝑖𝛿𝑖𝑗 = 𝑢𝑗, ex2) 𝐠𝑘 ∙ 𝐀 ∙ 𝐠𝑙 = 𝐠𝑘 ∙ (𝐴𝑖𝑗 𝐠𝑖 ⊗ 𝐠𝑗) ∙ 𝐠𝑙 = 𝐴𝑖𝑗 (𝐠𝑘 ∙ 𝐠𝑖)(𝐠𝑗 ∙ 𝐠𝑙) = 𝐴𝑖𝑗 𝑔𝑘𝑖 𝑔𝑗𝑙 = 𝐴𝑘𝑙 [12.3.1,3]
∘ Tensor ±¸¼ºÇϱâ: tensorÀÇ ¼ººÐ¾Æ ¾Ë·ÁÁ® ÀÖÀ» ¶§´Â basis vector¸¦ °öÇÏ¿© tensor¸¦ ȸº¹ÇÒ ¼ö ÀÖ½À´Ï´Ù.
ex1) 𝑢𝑗 (= 𝐮 ∙ 𝐠𝑗)¸¦ ¾Ë¸é, 𝑢j 𝐠𝑗 = 𝐮; ex2) 𝑢𝑗 (= 𝐮 ∙ 𝐠𝑗)¸¦ ¾Ë¸é, 𝑢𝑗 𝐠𝑗 = 𝐮 [12.3.15,16].
∘ 12.4 Tensor ¼ººÐ º¯È¯ ÀýÂ÷: 𝐚 = 𝑢𝑖 𝐠𝑖 <- contavariant ¼ººÐ°ú ÀÚ¿¬ ±âÀú vector°¡ ÁÖ¾îÁú °æ¿ì
1) metric tensor ±¸Çϱâ: ; 𝑔𝑖𝑗 = 𝐠𝑖 ∙ 𝐠𝑗
ex) ¿øÅë ÁÂÇ¥°è (𝑟, 𝜃, 𝑧)¿¡¼ x = 𝑟 cos 𝜃, y = 𝑟 sin 𝜃, z = 𝑧 ÀÏ ¶§ ÇØ´ç metric tensor 𝑔𝑖𝑗¸¦ ±¸ÇϽÿÀ. ◂
⌈ 𝐠1 ⌉ ⌈ cos𝜃 sin𝜃 0 ⌉ ⌈ 𝐞1 ⌉
¦𝐠2¦ = ¦ -𝑟 sin 𝜃 𝑟 cos𝜃 0 ¦ ¦𝐞2¦ [12.1.8]
⌊ 𝐠3 ⌋ ⌊ 0 0 1 ⌋ ⌊ 𝐞3 ⌋
¡Å 𝐠1 = cos𝜃 𝐞1 + sin𝜃 𝐞2, 𝐠2 = -𝑟 sin𝜃 𝐞1 + 𝑟 cos𝜃 𝐞2, 𝐠3 = 𝐞3
𝑔11 = 𝐠1 ∙ 𝐠1 = (cos𝜃 𝐞1 + sin𝜃 𝐞2) ∙ (cos𝜃 𝐞1 + sin𝜃 𝐞2) = 1, °°Àº ¹æ½ÄÀ¸·Î °è»êÀ» °è¼ÓÇÑ °á°ú´Â,
metric tensor [𝑔𝑖𝑗] =
⌈ 1 0 0 ⌉
¦ 0 𝑟2 0¦ ▮ [12.1.9]
⌊ 0 0 1 ⌋
2) reciproca(¿ª) metric tensor ±¸Çϱâ: 𝑔𝑖𝑗 <- [𝑔𝑖𝑗] = [𝑔𝑖𝑗]-1 °ü°è½ÄÀ¸·Î ºÎÅÍ
ex) ¿øÅë ÁÂÇ¥°è (𝑟, 𝜃, 𝑧)ÀÇ °æ¿ì¿¡ ¿ª metric tensor ±¸ÇϽÿÀ. ◂
reciprocal metric tensor [𝑔𝑖𝑗] =
⌈ 1 0 0 ⌉ -1 ⌈ 1 0 0 ⌉
¦0 𝑟2 0¦ = ¦0 1/𝑟2 0¦ ▮ [12.2.9]
⌊ 0 0 1 ⌋ ⌊ 0 0 1 ⌋
3) reciproca(¿ª) ±âÀú vector ±¸Çϱâ: 𝐠𝑖 = 𝑔𝑖𝑗 𝐠𝑗
ex) ¿øÅë ÁÂÇ¥°è (𝑟, 𝜃, 𝑧)ÀÇ °æ¿ì¿¡ ¿ª±âÀú vector 𝐠𝑖¸¦ À¯µµÇϽÿÀ. ◂
𝐠1 = 𝑔11𝐠1 + 𝑔12𝐠2 + 𝑔13𝐠3 = 𝐠1 + 0 + 0 = 𝐠1 ¡Å 𝐠1 = cos𝜃 𝐞1 + sin𝜃 𝐞2
𝐠2 = 𝑔21𝐠1 + 𝑔22𝐠2 + 𝑔23𝐠3 = 0 + (1/𝑟2 ) 𝐠2 + 0 + 0 = (1/𝑟2 ) 𝐠2 ¡Å 𝐠2 = -(1/𝑟) sin𝜃 𝐞1 + (1/𝑟) cos𝜃 𝐞2
𝐠3 = 𝑔31𝐠1 + 𝑔32𝐠2 + 𝑔33𝐠3 = 0 + 0 + 𝐠3 = 𝐠3 ¡Å 𝐠3 = 𝐞3 ▮ [12.2.4,5]
4) º¯È¯µÈ ¼ººÐ ±¸Çϱâ: 𝑢𝑖 = 𝑔𝑖𝑗 𝑢𝑗
5) º¯È¯µÈ tensor ±¸¼ºÇÔ: 𝐮 = 𝑢𝑖 𝐠𝑖 <- covariant ¡æ contravariant ÀÇ °æ¿ì¿¡µµ À¯»ç ¹æ½ÄÀ¸·Î ÁøÇàµË´Ï´Ù.
d) 12.5 Outer product(¿ÜÀû)
∘ 𝐠𝑖 ⨯ 𝐠𝑗 ¡Õ 𝝐𝑖𝑗𝑘 𝐠𝑘, 𝐚 ⨯ 𝐛 = 𝑎𝑖𝑏𝑗 (𝐠𝑖 ⨯ 𝐠𝑗) = 𝝐𝑖𝑗𝑘 𝑎𝑖𝑏𝑗 𝐠𝑘 <- 𝝐𝑖𝑗𝑘: ÀÏ¹Ý ÁÂÇ¥°èÀÇ ¼øȯ ±âÈ£ [12.5.2,3]
∘ 𝐠𝑖 ⨯ 𝐠∣ ¡Õ 𝝐𝑖𝑗𝑘 𝐠𝑘, 𝐚 ⨯ 𝐛 = 𝑎𝑖𝑏𝑗 (𝐠𝑖 ⨯ 𝐠∣) = 𝝐𝑖𝑗𝑘 𝑎𝑖𝑏𝑗 𝐠k ¡Å ÀÏ¹Ý ÁÂÇ¥°èÀÇ vectorÀÇ ¿ÜÀû: 𝐚 ⨯ 𝐛 = 𝝐𝑖𝑗𝑘 𝑎𝑖𝑏𝑗 𝐠k or 𝝐𝑖𝑗𝑘 𝑎𝑖𝑏𝑗 𝐠k [12.5.5,6]
e) 12.6 Triple inner product(»ïÁß ³»Àû)
(𝐚 ⨯ 𝐛) ∙ 𝐜 = 𝝐𝑖𝑗𝑘 𝑎𝑖𝑏𝑗 𝐠𝑘 ∙ 𝑐𝑙 𝐠𝑙 = 𝝐𝑖𝑗𝑘 𝑎𝑖𝑏𝑗𝑐𝑙 𝐠𝑘 ∙ 𝐠𝑙 = 𝝐𝑖𝑗𝑘 𝑎𝑖𝑏𝑗𝑐𝑙 𝛿𝑘𝑙 = 𝝐𝑖𝑗𝑘 𝑎𝑖𝑏𝑗𝑐𝑘 ¡Å (𝐚 ⨯ 𝐛) ∙ 𝐜 = 𝝐𝑖𝑗𝑘 𝑎𝑖𝑏𝑗𝑐𝑘 or 𝝐𝑖𝑗𝑘 𝑎𝑖𝑏𝑗𝑐𝑘 [12.6.1-3]
∘ Permutation symbol(¼øȯ ±âÈ£) Á¤ÀÇ: 𝝐𝑖𝑗𝑘 ¡Õ (𝐠𝑖 ⨯ 𝐠𝑗) ∙ 𝐠𝑘 <- 𝐄 = 𝝐𝑖𝑗𝑘 𝐠𝑖 ⊗ 𝐠𝑗 ⊗ 𝐠𝑘ÀÇ covariant ¼ººÐ [12.6.5]
𝝐𝑖𝑗𝑘 =
⌈ 𝑉𝑔 (123, 231, 312)
¦ -𝑉𝑔 (321, 132, 213) <- 𝑉𝑔: 3°³ ±âÀú vectorµé·Î ÀÌ·ç¾îÁø ÆòÇàÀ°¸éüÀÇ Ã¼Àû [12.6.8]
⌊ 0 (223, 331 ±âŸ)
∘ Reciprocal basis(¿ª±âÀú) vector <- ±×¸² 12.1 ÂüÁ¶
𝐠1 ∙ 𝐠1 = 1, 𝐠1 ∙ 𝐠2 = 0, 𝐠1 ∙ 𝐠3 = 0, (<- Kronecker delta) ¡Å 𝐠1 = 𝜆(𝐠2 ⨯ 𝐠3), 𝐠1 ∙ 𝐠1 = 𝜆(𝐠2 ⨯ 𝐠3) ∙ 𝐠1 = 𝜆𝑉𝑔 = 1, 𝜆 = 1/𝑉𝑔.
¡Å 𝐠1 = (𝐠2 ⨯ 𝐠3)/𝑉𝑔, 𝐠2 = (𝐠3 ⨯ 𝐠1)/𝑉𝑔, 𝐠3 = (𝐠1 ⨯ 𝐠2)/𝑉𝑔 [12.6.15-17]
∘ Reciprocal permutation symbol(¿ª¼øȯ ±âÈ£): 𝝐𝑖𝑗𝑘 ¡Õ (𝐠𝑖 ⨯ 𝐠𝑗) ∙ 𝐠𝑘 <- 𝐅 = 𝝐𝑖𝑗𝑘 𝐠𝑖 ⊗ 𝐠𝑗 ⊗ 𝐠𝑘ÀÇ contravariant ¼ººÐ [12.6.26]
𝝐𝑖𝑗𝑘 =
⌈ 1/𝑉𝑔 (123, 231, 312)
¦-1/𝑉𝑔 (321, 132, 213) <- 𝑉 𝑔: 3°³ ±âÀú vectorµé·Î ÀÌ·ç¾îÁø ÆòÇàÀ°¸éüÀÇ Ã¼Àû [12.6.30]
⌊ 0 (223, 331 ±âŸ)
f) 12.7 ¼öÇÐÀû À¯µµ °úÁ¤
∘ Permutation symbol(¼øȯ ±âÈ£) °ü°è½Ä: 𝝐𝑖𝑗𝑘 = 𝑉𝑔 𝑒𝑖𝑗𝑘 <- Cartesian ÁÂÇ¥°èÀÇ ¼øȯ ±âÈ£ÀÇ »ç¿ë °¡´É [12.7.1]
∘ Triple inner product(»ïÁß ³»Àû) °ªÀÇ À¯µµ: (𝐠𝑖 ⨯ 𝐠𝑗 ∙ 𝐠𝑘)(𝐠p ⨯ 𝐠q ∙ 𝐠r) = 𝝐𝑖𝑗𝑘 𝝐𝑝𝑞𝑟 <- ¡Ø [6.5.25] ÂüÁ¶ [12.7.2]
𝝐𝑖𝑗𝑘 𝝐𝑝𝑞𝑟 =
∣ 𝐠𝑖 ∙ 𝐠𝑝 𝐠𝑖 ∙ 𝐠𝑞 𝐠𝑖 ∙ 𝐠𝑟 ∣ ∣ 𝑔𝑖𝑝 𝑔𝑖𝑞 𝑔𝑖𝑟 ∣
∣ 𝐠𝑗 ∙ 𝐠𝑞 𝐠𝑗 ∙ 𝐠𝑞 𝐠j ∙ 𝐠r ∣ = ∣ 𝑔𝑗𝑝 𝑔𝑗𝑞 𝑔𝑗𝑟 ∣ = det [𝐠𝑖𝑗], 𝑔 ¡Õ det [𝐠𝑖𝑗] [12.7.4,5]
∣ 𝐠𝑘 ∙ 𝐠𝑝 𝐠𝑘 ∙ 𝐠𝑞 𝐠𝑘 ∙ 𝐠𝑟 ∣ ∣ 𝑔𝑘𝑝 𝑔𝑘𝑞 𝑔𝑘𝑟 ∣
basis vector (𝝐123)2 = det [𝐠] (𝑖,𝑗 = 1,2,3) = 𝑔, 𝝐123 = ¡î 𝑔 = 𝑉𝑔 ¡Å 𝝐𝑖𝑗𝑘 = 𝑉𝑔 𝑒𝑖𝑗𝑘 = ¡î 𝑔 𝑒𝑖𝑗𝑘 [12.7.6-8]
∘ Reciprocal permutation symbol(¿ª¼øȯ ±âÈ£): 𝝐𝑖𝑗𝑘 = 𝐠𝑖 ⨯ 𝐠𝑗 ∙ 𝐠𝑘, 𝝐𝑖𝑗𝑘 = (1/¡î 𝑔) 𝑒𝑖𝑗𝑘 <- ¿ª±âÀú vector ÂüÁ¶ [12.7.13-19]
g) 12.8 Eigenvalue(°íÀ¯°ª) °ü·Ã
(𝐀 - ¥ë𝐈) ∙ 𝐱 = 0 ¥ë: eigenvalue(°íÀ¯°ª), 𝐱: eigenvector(°íÀ¯ vector) , 𝐈: identity vector(´ÜÀ§ vector) [12.8.1]
det (𝐀 - ¥ë𝐈) = 0 [12.8.2]
¥ë3 - 𝐼 ¥ë2 + 𝐼𝐼 ¥ë2 - 𝐼𝐼𝐼 = 0 <- 𝐼, 𝐼𝐼, 𝐼𝐼𝐼: invariant scalars [12.8.3]
𝐼 = tr𝐀 = 𝐴𝑖.𝑖 𝐼𝐼 = 1/2{(tr𝐀 )2 - (tr(𝐀 2)} = 1/2 {(𝐴𝑖.𝑖 𝐴𝑗.𝑗 - 𝐴𝑖.𝑗 𝐴𝑖.𝑗)} 𝐼𝐼𝐼 = det 𝐀 = 𝑒𝑖𝑗𝑘 𝐴𝑖.1 𝐴𝑗.2 𝐴𝑘.3 [12.8.4-6]
|
|
|