±âº» ÆäÀÌÁö Æ÷Æ®Æú¸®¿À ´ëÇѹα¹ÀÇ ÀüÅë°ÇÃà Áß±¹°ú ÀϺ»ÀÇ ÀüÅë°ÇÃà ¼­À¯·´°ú ¹Ì±¹ÀÇ °ÇÃà ±¹¿ª û¿À°æ Çö´ë ¿ìÁÖ·Ð ´ëÇѹα¹ÀÇ »êdz°æ ¹éµÎ´ë°£ Á¾ÁÖ»êÇà ³×ÆÈ È÷¸»¶ó¾ß Æ®·¹Å· ¸ùºí¶û Áö¿ª Æ®·¹Å· ¿ä¼¼¹ÌƼ ij³â µî Ƽº£Æ® ½ÇÅ©·Îµå ¾ß»ý »ý¹° Æijë¶ó¸¶»çÁø °¶·¯¸® Ŭ·¡½Ä ·¹ÄÚµå °¶·¯¸® AT Æ÷·³ Æ®·¹Å· Á¤º¸ ¸µÅ©


 ·Î±×ÀÎ  È¸¿ø°¡ÀÔ

ÅÙ¼­ Çؼ® II-2. ÁÂÇ¥º¯È¯ II; ÀÏ¹Ý ÁÂÇ¥°è ¹ÌºÐ
    ±è°ü¼®  2019-06-03 23:41:00, Á¶È¸¼ö : 1,398
- Download #1 : Tensor_II_2.jpg (55.1 KB), Download : 1



II-3 ÁÂÇ¥ÀÇ º¯È¯ II
  
      a) 13.1,2 Basis(±âÀú) vectorÀÇ ¼öÇÐÀû À¯µµ   <- ±×¸² 13.1, 13. 2 ÂüÁ¶
        ∘ R3 °ø°£¿¡¼­ Á¡ P´Â Cartesian ÁÂÇ¥°è¿¡¼­´Â (𝑥1, 𝑥2, 𝑥3), ÀÏ¹Ý ÁÂÇ¥°è¿¡¼­´Â (𝜉1, 𝜉2, 𝜉3) ·Î Ç¥±âÇÒ ¼ö ÀÖ½À´Ï´Ù.
          µÎ ÁÂÇ¥°è »çÀÌ¿¡ ¼­·Î º¯È¯ÀÌ °¡´ÉÇÏ´Ù°í ÇÒ ¶§ ±× °ü°è½ÄÀº  𝑥𝑖 =  𝑥𝑖(𝜉1, 𝜉2, 𝜉3),  𝜉𝑖 =  𝜉𝑖(𝑥1,  𝑥2, 𝑥3)°¡ µË´Ï´Ù.    [13.1.1,2]
          µû¶ó¼­, Á¡ PÀÇ ±âÁØÁ¡À¸·ÎºÎÅÍÀÇ À§Ä¡ vector´Â 𝐱 = 𝐱(𝜉1, 𝜉2, 𝜉3)·Î Ç¥±âÇÒ ¼ö ÀÖ½À´Ï´Ù.   [13.1.3]  
        ∘ natural basis(ÀÚ¿¬ ±âÀú) vectorÀÇ Á¤ÀÇ: 𝐠𝑖 ¡Õ ¡Ó𝐱/¡Ó𝜉𝑖  <- ÇÑ Á¡¿¡¼­ °¢ ÁÂÇ¥ ¹æÇâÀ¸·ÎÀÇ tangent(Á¢¼±)ÀÇ ¼ºÁú   [13.2.1]
          Á¡ P´Â Cartian ÁÂÇ¥°è·Î 𝐱 = 𝑥1𝐞1+ 𝑥2𝐞2+ 𝑥3𝐞3= 𝑥𝑖 𝐞𝑖,  ¡Å 𝐠𝑖 = ¡Ó𝐱/¡Ó𝜉𝑖 = (¡Ó𝑥𝑗/¡Ó¥î𝑖) 𝐞𝑗   [13.2.5]
           ex) ¿øÅë ÁÂÇ¥°è (𝜉1 = 𝑟, 𝜉2 = 𝜃, 𝜉3 = 𝑧)¿¡¼­ÀÇ ÀÚ¿¬ ±âÀú vector  𝐠𝑖¸¦ ±¸ÇϽÿÀ.  ◂
              𝑥1 =  𝜉1cos 𝜉2,  𝑥2 =  𝜉1sin 𝜉2,  𝑥3 = 𝜉3      [13.2.6]
              𝐠1 = ¡Ó𝑥1/¡Ó𝜉1𝐞1 + ¡Ó𝑥2/¡Ó𝜉1 𝐞2 + ¡Ó𝑥3/¡Ó𝜉1 𝐞3 = cos𝜉2 𝐞1 + sin𝜉2 𝐞2 = cos𝜃 𝐞1 + sin𝜃 𝐞2
              𝐠2 = ¡Ó𝑥1/¡Ó𝜉2𝐞1 + ¡Ó𝑥2/¡Ó𝜉2 𝐞2 + ¡Ó𝑥3/¡Ó𝜉2 𝐞3 = -𝜉1 sin𝜉2 𝐞1 + 𝜉1 cos𝜉2 𝐞2 =  -𝑟 sin𝜃 𝐞1 + 𝑟 cos𝜃 𝐞2   [13.2.7]
              𝐠3 = ¡Ó𝑥1/¡Ó𝜉3𝐞1 + ¡Ó𝑥2/¡Ó𝜉3 𝐞2 + ¡Ó𝑥3/¡Ó𝜉3 𝐞3 = 𝐞3  ▮
        ∘ reciprocal basis(¿ª±âÀú) vectorÀÇ Á¤ÀÇ: 𝐠𝑖 ¡Õ ¡Ó𝜉𝑖/¡Ó𝐱  <- ÇÑ Á¡¿¡¼­ °¢ ÁÂÇ¥ ¹æÇâÀ¸·ÎÀÇ normal(¹ý¼±)ÀÇ ¼ºÁú   [13.2.2]           
           𝐠𝑖 ¡Õ ¡Ó𝜉𝑖/¡Ó𝐱 = (¡Ó𝜉𝑖/¡Ó𝑥𝑗) 𝐞𝑗  <- 𝐠𝑗 ∙ 𝐠𝑖 = 𝛿𝑗𝑖,  ¡Ø natural basis vector¿Í reciprocal basis vector´Â »óÈ£ Á÷±³ÇÔ  
        ∘ 𝐞𝑖 = (¡Ó𝜉𝑗/¡Ó𝑥𝑖) 𝐠𝑗,  𝐞𝑖 = (¡Ó𝑥𝑗/¡Ó𝜉𝑖) 𝐠𝑗  <- Cartesian ÁÂÇ¥°è´Â contaravariant(¹Ýº¯)°ú covariant(°øº¯)ÀÇ ±¸ºÐÀÌ ¾øÀ¸¹Ç·Î  𝐞𝑖 = 𝐞𝑖   [13.2.3,4]
      b) 13.3 Metric tensorÀÇ ÀǹÌ
        ∘ Cartesian ÁÂÇ¥°è¿¡¼­: metric tensor: 𝛿𝑖𝑗
          𝐱 = 𝑥1𝐞1+ 𝑥2𝐞2+ 𝑥3𝐞3= 𝑥𝑖 𝐞𝑖   𝑑𝐱 = 𝑑𝑥1𝐞1+ 𝑑𝑥2𝐞2+ 𝑑𝑥3𝐞3= 𝑑𝑥𝑖 𝐞𝑖   𝑑𝑠2 = 𝑑𝐱 ∙ 𝑑𝐱 = 𝑑𝑥𝑖 ∙ 𝑑𝑥𝑗 = 𝑑𝑥𝑖𝑑𝑥𝑗 𝛿𝑖𝑗 = 𝑑𝑥𝑖𝑑𝑥𝑖,  ¡Å 𝑑𝑠2 ¡Õ 𝑑𝑥𝑖𝑑𝑥𝑖   [13.3.1-7]
        ∘ General(ÀϹÝ) ÁÂÇ¥°è¿¡¼­: metric tensor: 𝑔𝑖𝑗 = 𝐠𝑖 ∙ 𝐠𝑗
          𝑑𝐱 = (¡Ó𝐱/¡Ó𝜉𝑖)𝑑𝜉𝑖   𝑑𝐱 = 𝐠𝑖 𝑑𝜉𝑖   𝑑𝑠2 = 𝑑𝐱 ∙ 𝑑𝐱 =  𝑑𝜉𝑖 𝐠𝑖 ∙ 𝑑𝜉𝑗 𝐠𝑗  = 𝑔𝑖𝑗 𝑑𝜉𝑖𝑑𝜉𝑗 ¡Å 𝑑𝑠2 ¡Õ 𝑔𝑖𝑗 𝑑𝜉𝑖𝑑𝜉𝑗   [13.3.8-10]        
      c) 13.4 ÁÂÇ¥ º¯È¯ÀÇ Á¶°Ç
        ∘ JacobianÀÌ 0(zero)ÀÌ ¾Æ´Ô
          Cartesian ÁÂÇ¥°èÀÇ (𝑥1, 𝑥2, 𝑥3)¿¡¼­ ÀÏ¹Ý ÁÂÇ¥°èÀÇ (𝜉1, 𝜉2, 𝜉3)·ÎÀÇ º¯È¯ Jacobian 𝐽 ´Â ¾Æ·¡Ã³·³ Á¤ÀÇÇϸç, ±× º¯È¯ Á¶°ÇÀº
          𝐽 ¡Õ det (¡Ó𝑥𝑗/¡Ó𝜉𝑖) =
             ∣ ¡Ó𝑥1/¡Ó𝜉1  ¡Ó𝑥1/¡Ó𝜉2  ¡Ó𝑥1/¡Ó𝜉3 ∣ 
             ∣ ¡Ó𝑥2/¡Ó𝜉1  ¡Ó𝑥2/¡Ó𝜉2  ¡Ó𝑥2/¡Ó𝜉3 ∣  ¡Á 0   [13.4.1]
             ∣ ¡Ó𝑥 3/¡Ó𝜉1 ¡Ó𝑥3/¡Ó𝜉2  ¡Ó𝑥3/¡Ó𝜉3
             𝐽 =  𝜖𝑖𝑗𝑘 (¡Ó𝑥𝑖/¡Ó𝜉1)(¡Ó𝑥𝑗/¡Ó𝜉2)(¡Ó𝑥𝑘/¡Ó𝜉3) = (¡Ó𝐱/¡Ó𝜉1) ⨯ (¡Ó𝐱/¡Ó𝜉2) ∙ (¡Ó𝐱/¡Ó𝜉3) = 𝐠1 ⨯ 𝐠2 ∙ 𝐠3 = 𝜖𝑖𝑗𝑘 = ¡î 𝑔  <- g = det [g𝑖𝑗]      [13.3.1-7]
             𝐽  > 0 : ¿À¸¥¼Õ ¹ýÄ¢ÀÇ ÁÂÇ¥°è·ÎÀÇ º¯È¯,  𝐽  < 0 : ¿Þ¼Õ ¹ýÄ¢ÀÇ ÁÂÇ¥°è·ÎÀÇ º¯È¯,   𝐽 = 0   º¯È¯ ºÒ°¡     [13.4.8]
     d) 13.5 TensorÀÇ ÁÂÇ¥ º¯È¯  <- ÇϳªÀÇ ÀÏ¹Ý ÁÂÇ¥°è 𝜀𝑖¿¡¼­ ´Ù¸¥ ÀÏ¹Ý ÁÂÇ¥°è 𝜀̄𝑖À¸·ÎÀÇ º¯È¯ 
           °¢°¢ÀÇ natural basis(ÀÚ¿¬ ±âÀú) vector 𝐠𝑖 = ¡Ó𝐱/¡Ó𝜀𝑖, 𝐠̄𝑖 = ¡Ó𝐱/¡Ó𝜀̄𝑖µéÀÇ dot product(³»Àû)¸¦ º¯È¯ tensor·Î Á¤ÀÇÇÕ´Ï´Ù.   [13.5.1]       
        ∘ º¯È¯ tensor 𝑙𝑖𝑗 ¡Õ 𝐠̄𝑖 ∙ 𝐠𝑗 = ¡Ó𝐱/¡Ó𝜀̄𝑖 ∙ ¡Ó𝐱/¡Ó𝜀𝑗 = (¡Ó𝜀𝑘/¡Ó𝜀̄𝑖)(¡Ó𝐱/¡Ó𝜀𝑘) ∙ ¡Ó𝐱/¡Ó𝜀𝑗 = (¡Ó̄𝜀𝑘/¡Ó𝜀̄𝑖) 𝐠𝑘 ∙ 𝐠𝑗 = 𝑔𝑘𝑗 ¡Ó̄𝜀𝑘/¡Ó𝜀̄𝑖  <- chain rule Àû¿ë   [13.5.2-5]
        ∘ 𝑢̄𝑖 = 𝑙𝑖𝑗 𝑢𝑗,  𝑢̄𝑖 = 𝑙𝑖.𝑗 𝑢𝑗,  𝑢̄ 𝑖 = 𝑙𝑖.𝑗 𝑢𝑗,  𝑢̄ 𝑖 = 𝑙𝑖𝑗 𝑢𝑗  <- º¯È¯ tensor´Â contravariant ¼ººÐ ⇄ covariant ¼ººÐ ¿ªÇÒ   [13.5.5-9]
        ∘ 𝑙𝑖𝑗 =  𝑔𝑘𝑗 ¡Ó̄𝜀𝑘/¡Ó𝜀̄𝑖 = 𝑔̄𝑖𝑘 ¡Ó̄𝜀̄𝑘/¡Ó𝜀𝑗,  𝑙𝑖𝑗 =  𝑔̄𝑘𝑖 ¡Ó̄𝜀̄𝑘/¡Ó𝜀𝑗 = 𝑔𝑘𝑗 ¡Ó̄𝜀𝑘/¡Ó̄𝜀̄ 𝑖,   𝑙𝑖.𝑗 =  ¡Ó̄𝜀̄𝑖/¡Ó𝜀𝑗,   𝑙𝑖.𝑗 =  ¡Ó𝜀𝑗/¡Ó𝜀̄ 𝑖   [13.5.10-13]
           ex) 𝑙𝑖.𝑗 À¯µµ ¡æ  𝑙𝑖.𝑗 = 𝐠̄𝑖 ∙ 𝐠𝑗 = 𝑔̄𝑖𝑘 𝐠̄𝑘 ∙ 𝐠𝑗 = 𝑔̄𝑖𝑘 ¡Ó𝐱/¡Ó𝜀̄𝑘 ∙ ¡Ó𝐱/¡Ó𝜀𝑗 = 𝑔̄𝑖𝑘 ¡Ó𝐱/¡Ó𝜀̄𝑘 ∙ (¡Ó𝜀̄𝑙/¡Ó𝜀̄𝑙)¡Ó𝐱/¡Ó𝜀𝑗 = 𝑔̄𝑖𝑘 ¡Ó𝐱/¡Ó𝜀̄𝑘 ∙ (¡Ó𝜀̄𝑙/¡Ó𝜀𝑗)¡Ó𝐱/¡Ó𝜀̄𝑙
                                                = 𝑔̄𝑖𝑘 𝐠̄𝑘 ∙ (¡Ó𝜀̄𝑙/¡Ó𝜀𝑗)𝐠̄𝑙 = 𝐠̄𝑖 ∙ (¡Ó𝜀̄𝑙/¡Ó𝜀𝑗)   𝑙𝑖.𝑗 = 𝛿𝑖𝑙 ¡Ó𝜀̄𝑙/¡Ó𝜀𝑗 = ¡Ó𝜀̄𝑖/¡Ó𝜀𝑗    [13.5.16-21]                  
      e) 13.6,7 ÁÂÇ¥ º¯È¯°ú tensorÀÇ Á¤ÀÇ
           Tensor´Â Á¤ÇØÁø º¯È¯ ¹ýÄ¢À» ¸¸Á·ÇÏ´Â ¹°¸®·®À̶ó°í Á¤ÀÇÇÒ ¼ö ÀÖ½À´Ï´Ù. <- tensorÀÇ ÁÂÇ¥ º¯È¯: ÀÓÀÇ ÁÂÇ¥°è 𝜀𝑖 ¡æ 𝜀̄ 𝑖
        ∘ contravariant(¹Ýº¯) º¯È¯ ¹ýÄ¢: ÀÓÀÇÀÇ vector¸¦ °¢°¢ÀÇ ÁÂÇ¥°è¿¡¼­ °í·ÁÇϸé,  𝐮 = 𝑢̄𝑗 𝐠̄𝑗 = 𝑢𝑗 𝐠𝑗   [13.6.1]                
           𝑢̄𝑗 (¡Ó𝐱/¡Ó𝜀̄𝑗) = 𝑢𝑗 (¡Ó𝐱/¡Ó𝜀𝑗),  𝑢̄𝑗 (¡Ó𝐱/¡Ó𝜀̄𝑗)(¡Ó𝜀̄𝑖/¡Ó𝐱) = 𝑢𝑗 (¡Ó𝐱/¡Ó𝜀𝑗)(¡Ó𝜀̄𝑖/¡Ó𝐱),  𝑢̄𝑗 𝛿𝑖𝑗 = 𝑢𝑗 (¡Ó𝜀̄ 𝑖/¡Ó𝜀𝑗)  ¡Å   𝑢̄𝑖 = 𝑢𝑗 (¡Ó𝜀̄𝑖/¡Ó𝜀𝑗)   [13.6.2-8]
           ex) velocity 𝑣𝑖 = 𝑑𝜀𝑖/𝑑𝑡 ¸¦ ÁÂÇ¥°è 𝜀̄𝑗¿¡¼­ °üÂûÇϸé,  𝑣̄𝑗 = 𝑑𝜀̄𝑗/𝑑𝑡 =  (¡Ó𝜀̄𝑗/¡Ó𝜀𝑘)(¡Ó𝜀𝑘/𝑑𝑡) = (¡Ó𝜀̄𝑗/¡Ó𝜀𝑘) 𝑣𝑘  ¡Å º¯È¯ ¹ýÄ¢À» ¸¸Á·   [13.7.1-3]
        ∘ covariant(°øº¯) º¯È¯ ¹ýÄ¢: À¯»çÇÑ ¹æ½ÄÀ¸·Î À¯µµ Çϸé,  𝑢̄𝑖 = 𝑢𝑗 (¡Ó𝜀𝑗/¡Ó𝜀̄𝑖)   [13.6.9]
        ∘ scalar ºÒº¯ÀÇ ¹ýÄ¢: scalar´Â 0Â÷ tensor·Î Áö¼ö°¡ ¾øÀ¸¹Ç·Î, 𝜙̄(𝜀̄) = 𝜙(𝜀)   [13.6.12]
        ∘ 2Â÷ tensorÀÇ º¯È¯ ¹ýÄ¢;  contravariant(¹Ýº¯) tensor: 𝐴̄𝑖𝑗 =  𝐴𝑘𝑙 (¡Ó𝜀̄𝑖/¡Ó𝜀𝑘)(¡Ó𝜀̄𝑗/¡Ó𝜀𝑙)   [13.6.15]  
               covariant(°øº¯) tensor: 𝐴̄𝑖𝑗 =  𝐴𝑘𝑙 (¡Ó𝜀𝑘/¡Ó𝜀̄𝑖)(¡Ó𝜀𝑙/¡Ó𝜀̄𝑗),   È¥ÇÕ tensor: 𝐴̄ 𝑖.𝑗 =  𝐴𝑘.𝑗 (¡Ó𝜀̄𝑖/¡Ó𝜀𝑘)(¡Ó𝜀𝑙/¡Ó𝜀̄𝑗)   [13.6.16,17]    
       f) 13.8 Physical component(¹°¸®Àû ¼ººÐ)ÀÇ Á¤ÀÇ <- ¾Æ·¡ 𝑖̄𝑖̄, 𝑗̄𝑗̄: Áߺ¹ Áö¼ö(dummy index) ¹ÌÀû¿ë Ç¥±âÀÓ
         ∘ normalization of basis(±âÀúÀÇ Á¤±ÔÈ­): ¹°¸®Àû ¼ººÐÀÇ »ç¿ëÀ» À§ÇØ Cartesian ÁÂÇ¥°èÀÇ ´ÜÀ§ ±âÀú vector·Î º¯È¯ÇÔ  
            𝐞𝑖 = 𝐠𝑖/¡«𝐠¡«= 𝐠𝑖/¡î 𝑔𝑖̄𝑖̄ or  𝐠𝑖 = ¡î 𝑔𝑖̄𝑖̄ 𝐞𝑖 ¸¶Âù°¡Áö·Î,  𝐞𝑖 = 𝐠𝑖/¡«𝐠¡«= 𝐠𝑖/¡î 𝑔𝑖̄𝑖̄ or 𝐠𝑖 = ¡î 𝑔𝑖̄𝑖̄ 𝐞𝑖   [13.8.3,4]
             ex) ¿øÅë ÁÂÇ¥°è (𝜉1 = 𝑟, 𝜉2 = 𝜃, 𝜉3 = 𝑧),  ¿©±â¼­ metric tensor µéÀº  𝑔11 = 𝑔33 = 1,  𝑔22 = 𝑟2  ³ª¸ÓÁö´Â 0 ÀÔ´Ï´Ù.
                 𝐞1 = 𝐠1/¡î 𝑔11 = 𝐠1,  𝐞2 = 𝐠2/¡î 𝑔22 = 𝐠2/𝑟,  𝐞3 = 𝐠3/¡î 𝑔33 = 𝐠3,   ¡Å  𝐠1 = 𝐞1,  𝐠2 = 𝑟𝐞2,  𝐠3 = 𝐞3   [13.8.5,7]
         ∘ physical component(¹°¸®Àû ¼ººÐ):  unit basis(´ÜÀ§ ±âÀú) vector·Î º¯È¯ÇßÀ» ¶§ÀÇ ¼ººÐÀ¸·Î Á¤ÀÇÇÕ´Ï´Ù.  
            𝐯 = 𝑣(𝑖) 𝐞𝑖 = 𝑣(𝑖) 𝐞𝑖;  contravariant ¹°¸®Àû ¼ººÐ: 𝑣(𝑖) = 𝑣𝑖 ¡î 𝑔𝑖̄𝑖̄,  covariant ¹°¸®Àû ¼ººÐ: 𝑣(𝑖) = 𝑣𝑖 ¡î 𝑔𝑖̄𝑖̄   [13.8.13-21]
           2Â÷ tensorÀÇ ¹°¸®Àû ¼ººÐ: 𝐴(𝑖𝑗) 𝐠𝑖 ⊗  𝐠𝑗 ¡æ contravariant: 𝐴(𝑖𝑗) = 𝐴𝑖𝑗 ¡î (𝑔𝑖̄𝑖̄𝑔𝑗̄𝑗̄),  covariant: 𝐴(𝑖𝑗) = 𝐴𝑖𝑗 ¡î (𝑔𝑖̄𝑖̄𝑔𝑗̄𝑗̄)   [13.8.24-27]  
           composite: 𝐴(𝑖)(.𝑗) = 𝐴𝑖.𝑗 ¡î (𝑔𝑖̄𝑖̄/𝑔𝑗̄𝑗̄)  ¡Å 𝐀 =  𝐴(𝑖𝑗) 𝐞𝑖 ⊗ 𝐞𝑗 =  𝐴(𝑖𝑗) 𝐞𝑖 ⊗ 𝐞𝑗 = 𝐴(𝑖)(.𝑗) 𝐞𝑖 ⊗ 𝐞𝑗   [13.8.28-30]

II-4 ÀÏ¹Ý ÁÂÇ¥°è¿¡¼­ÀÇ ¹ÌºÐ  

      a) 14.1 ScalaÀÇ ¹ÌºÐ: ¡Ó𝜙/¡Ó𝜉𝑗 or 𝜙.𝑗 <- 𝜙: scala field   [14.1.1]
           ex) Scala Àå 𝜙(𝜉1, 𝜉2, 𝜉3) = (𝜉1)2 + cos (𝜉2) + 𝜉3ÀÇ ÁÂÇ¥¿¡ ´ëÇÑ ¹ÌºÐÀ» ±¸ÇϽÿÀ  ◂
                 ¡Ó𝜙/¡Ó𝜉1 = 2𝜉1,   ¡Ó𝜙/¡Ó𝜉2 = -sin(𝜉2),   ¡Ó𝜙/¡Ó𝜉3 = 1  ▮  
      b) VectorÀÇ ¹ÌºÐ  <- ¡Ø ¼ººÐ¿¡ ´ëÇÑ ¹ÌºÐ°ú º¯È­ÇÏ´Â ±âÀú vector¿¡ ´ëÇÑ ¹ÌºÐÀ» ÇÔ²² ÇÔ           
        ∘ contravariant vector ¹ÌºÐ: ¡Ó𝐮/¡Ó𝜉𝑗 = (¡Ó/¡Ó𝜉𝑗)𝑢𝑖 𝐠𝑗 = (¡Ó𝑢𝑖/¡Ó𝜉𝑗) 𝐠𝑖 + 𝑢𝑖 (¡Ó𝐠𝑖/¡Ó𝜉𝑗) = 𝑢𝑖.𝑗 𝐠𝑖 +  𝑢𝑖 𝐠𝑖.𝑗   [14.2.1-3] 
           𝐠𝑖 ¡Õ ¡Ó𝐱/¡Ó𝜉𝑖 = ¡Ó𝑥𝑗/¡Ó𝜉𝑖 𝐞𝑗,  𝐞𝑖 = ¡Ó𝜉𝑗/¡Ó𝑥𝑖 𝐠𝑖 ¡æ 𝐠𝑖.𝑗 = ¡Ó(¡Ó𝐱/¡Ó𝜉 𝑖)/¡Ó𝜉𝑗 = ¡Ó𝐱2/¡Ó𝜉𝑖¡Ó𝜉𝑗,  𝐠𝑖.𝑗 = 𝐠𝑗,𝑖.,  𝐠𝑖.𝑗 = ¡Ó2𝐱/¡Ó𝜉𝑖¡Ó𝜉𝑗 = (¡Ó2𝑥𝑚/¡Ó𝜉𝑖¡Ó𝜉𝑗) 𝐞𝑚   [14.2.4-7]
             = (¡Ó2𝑥𝑚/¡Ó𝜉𝑖¡Ó𝜉𝑗)(¡Ó𝜉𝑛/𝑥𝑚) 𝐠𝑛 = 𝜞𝑛𝑖𝑗 𝐠𝑛  ¡Å ¡Ó𝐮/¡Ó𝜉𝑗 = (¡Ó/¡Ó𝜉𝑗)𝑢𝑖 𝐠𝑗 = 𝑢𝑖.𝑗 𝐠𝑖 +  𝑢𝑖 𝐠𝑖.𝑗 = 𝑢𝑖.𝑗 𝐠𝑖 + 𝑢𝑖 𝜞𝑛𝑖𝑗 𝐠𝑛 =  𝑢𝑖.𝑗 𝐠𝑖 + 𝑢𝑘 𝜞𝑖𝑘𝑗 𝐠𝑖   [14.2.8]
        ∘ 2Á¾ Christoffel ±âÈ£ÀÇ Á¤ÀÇ <- ¡Ø ±âÀú vectorÀÇ Á¢¼± ¹æÇâ ¼ººÐ by the Gauss Formulas
             𝜞𝑛𝑖𝑗 ¡Õ (¡Ó2𝑥𝑚/¡Ó𝜉𝑖¡Ó𝜉𝑗)(¡Ó𝜉𝑛/¡Ó𝑥𝑚),  𝐠𝑖.𝑗∙ 𝐠𝑘 = 𝜞𝑛𝑖𝑗 𝐠𝑛∙ 𝐠𝑘 = 𝜞𝑛𝑖𝑗 𝛿𝑘𝑛 = 𝜞𝑘𝑖𝑗   𝐠𝑖.𝑗∙ 𝐠𝑘 = 𝜞𝑘𝑖𝑗,   ¡Å 𝐠𝑖.𝑗∙ 𝐠𝑘 =  𝜞𝑘𝑖𝑗   [14.2.9-11]                    
        ∘ contravariant ¼ººÐÀÇ covariant ¹ÌºÐ: ¡Ó𝐮/¡Ó𝜉𝑗 = 𝑢𝑖.𝑗 𝐠𝑖+ 𝑢𝑘 𝜞𝑖𝑘𝑗 𝐠𝑖 = (𝑢𝑖.𝑗 + 𝑢𝑘 𝜞𝑖𝑘𝑗) 𝐠𝑖 = 𝑢𝑖𝑗 𝐠𝑖,  𝑢 𝑖𝑗 ¡Õ 𝑢𝑖.𝑗 + 𝑢𝑘 𝜞𝑖𝑘𝑗    [14.2.12,13]  
        ∘ natural basis(ÀÚ¿¬ ±âÀú) vectorÀÇ ¹ÌºÐ: ¡Ó𝐠𝑖/¡Ó𝜉𝑗 = 𝜞𝑘𝑖𝑗 𝐠𝑘,  ¡Ø  𝜞𝑘𝑖𝑗 = 𝜞𝑘𝑗𝑖 ¡ñ 𝐠𝑖.𝑗 =  𝐠𝑗.𝑖  
        ∘ covariant ¼ººÐ vectorÀÇ ¹ÌºÐ: ¡Ó𝐮/¡Ó𝜉𝑗 = (¡Ó/¡Ó𝜉𝑗)𝑢𝑖 𝐠𝑗 = (¡Ó𝑢𝑖/¡Ó𝜉𝑗) 𝐠𝑖 + 𝑢𝑖 (¡Ó𝐠𝑖/¡Ó𝜉𝑗) = 𝑢𝑖.𝑗 𝐠𝑖 +  𝑢𝑖 𝐠𝑖.𝑗   [14.2.14]
             𝐠𝑖∙ 𝐠𝑗 = 𝛿𝑖𝑗,  ¾çº¯ 𝜉𝑘·Î ¹ÌºÐ,   𝐠𝑖.𝑘∙ 𝐠𝑗 + 𝐠𝑖∙ 𝐠𝑗.𝑘 = 0,  𝐠𝑖.𝑘∙ 𝐠𝑗 = - 𝐠𝑖∙ 𝐠𝑗.𝑘, 𝐠𝑖∙ 𝐠𝑗.𝑘 = 𝜞𝑖𝑗𝑘,  𝐠𝑖.𝑘∙ 𝐠𝑗 = -𝜞𝑖𝑗𝑘,  (𝐠𝑖.𝑘∙ 𝐠𝑗)𝐠𝑘 = -𝜞𝑖𝑗𝑘𝐠𝑘   [14.2.15-18] 
             (𝐠𝑖.𝑘 ∙ 𝐠𝑗) 𝐠𝑘 = 𝐠𝑖.𝑘 𝐠𝑘 ∙ 𝐠𝑗 = 𝐠𝑖.𝑘𝛿𝑘𝑗 = 𝐠𝑖.𝑗 <- *;  𝐠𝑖.𝑗 = -𝜞𝑖𝑗𝑘𝐠𝑘,  ¡Å ¡Ó𝐮/¡Ó𝜉𝑗 = (¡Ó/¡Ó𝜉𝑗)𝑢𝑖 𝐠𝑗 = 𝑢𝑖.𝑗 𝐠𝑖 - 𝑢𝑖 𝜞𝑖𝑗𝑘𝐠𝑘 = 𝑢𝑖.𝑗 𝐠𝑖 - 𝑢𝑘 𝜞𝑖𝑗𝑘𝐠𝑖   [14.2.16-20]
        ∘ covariant ¼ººÐÀÇ covariant ¹ÌºÐ: ¡Ó𝐮/¡Ó𝜉𝑗 = 𝑢𝑖.𝑗 𝐠𝑖 +  𝑢𝑖 𝐠𝑖.𝑗 = 𝑢𝑖.𝑗 𝐠𝑖 - 𝑢𝑖 𝜞𝑖𝑗𝑘 𝐠𝑘 = (𝑢𝑖.𝑗 - 𝑢𝑘 𝜞𝑘𝑖𝑗)𝐠𝑖,  𝑢 𝑖𝑗 ¡Õ 𝑢𝑖.𝑗 - 𝑢𝑘 𝜞𝑘𝑖𝑗   [14.2.21,22]
        ∘ reciprocal basis(¿ª±âÀú) vectorÀÇ ¹ÌºÐ: ¡Ó𝐠𝑖/¡Ó𝜉𝑗 = -𝜞𝑖𝑗𝑘 𝐠𝑘 
        ∘ 𝑢𝑖𝑗 - 𝑢𝑗𝑖 = (𝑢𝑖.𝑗 - 𝑢𝑘 𝜞𝑘𝑖𝑗) - (𝑢𝑗,𝑖 - 𝑢𝑘 𝜞𝑘𝑗𝑖) = 𝑢𝑖.𝑗 - 𝑢𝑗,𝑖  <-  𝜞𝑘𝑖𝑗 = 𝜞𝑘𝑗𝑖,  ¡Å 𝑢𝑖𝑗 - 𝑢𝑗𝑖 = 𝑢𝑖.𝑗 - 𝑢𝑗,𝑖  <- ¡Ø ÀÚÁÖ »ç¿ëÇÏ´Â °ü°è½Ä   [14.2.23,24]
        ∘ covariant ¼ººÐ°ú contravariant ¼ººÐÀ» °®´Â vector¿¡ ´ëÇÑ ¹ÌºÐ °ü°è½Ä: 𝑢 𝑖𝑗 =  𝑔𝑖𝑘 𝑢𝑘𝑗  <- by metric tensor   [14.2.25]
     c) Christoffel ±âÈ£
        ∘ 1Á¾ Christoffel ±âÈ£ÀÇ Á¤ÀÇ: metric tensor¿Í 2Á¾ Christoffel ±âÈ£ÀÇ °ö  
                𝐠𝑖.𝑗 = 𝜞𝑘𝑖𝑗 𝐠𝑘 = 𝑔𝑘𝑙 𝜞𝑘𝑖𝑗 𝐠𝑙 <- 𝐠𝑘 ¡æ 𝐠𝑙 by metric 𝑔𝑘𝑙,   𝜞𝑖𝑗𝑙 ¡Õ 𝑔𝑘𝑙 𝜞𝑘𝑖𝑗   <- ¡Ø [𝑖𝑗, 𝑙]·Îµµ Ç¥±âÇÔ   [14.3.1,2]                              
               ¡Å 𝐠𝑖.𝑗 = 𝜞𝑘𝑖𝑗 𝐠𝑘 = 𝜞𝑖𝑗𝑙 𝐠𝑙 <- ±âÀú vector¿¡ µû¸§,  𝜞𝑘𝑖𝑗 𝐠𝑘 ∙ 𝐠𝑚 = 𝜞𝑖𝑗𝑙 𝐠𝑙 ∙ 𝐠𝑚,  𝜞𝑘𝑖𝑗𝛿𝑚𝑘 = 𝜞𝑚𝑖𝑗 = 𝐠𝑙m 𝜞𝑖𝑗𝑙,  ¡Å 𝜞𝑚𝑖𝑗 = 𝐠𝑙m 𝜞𝑖𝑗𝑙   [14.3.2-6]
               𝜞𝑘𝑖𝑗 = 𝜞𝑘𝑗𝑖 =  𝐠𝑘 ∙ 𝐠𝑖.𝑗 =  𝐠𝑘 ∙ 𝐠𝑗.𝑖 = -𝐠𝑖 ∙ 𝐠𝑘.𝑗  <-  covariant vectorÀÇ ¹ÌºÐ ÂüÁ¶;  𝜞𝑖𝑗𝑘 = 𝜞𝑗𝑖𝑘 = 𝐠𝑘 ∙ 𝐠𝑖.𝑗 = 𝐠𝑘 ∙ 𝐠𝑗.𝑖   [14.3.7,8]
        ∘ 2Á¾ Christoffel ±âÈ£ÀÇ °è»ê  <- ¡Ø ÇÙ½ÉÀûÀÎ °è»ê!  
               𝑔𝑖𝑗 = 𝐠𝑖 ∙ 𝐠𝑗, À̸¦ ÁÂÇ¥°è¿¡ ´ëÇؼ­ ¹ÌºÐÇϸé,   ¡Ó𝑔𝑖𝑗/¡Ó𝜉𝑘 = 𝐠𝑖.𝑘 ∙ 𝐠𝑗 +  𝐠𝑖 ∙ 𝐠𝑗.𝑘   [14.3.9]
              ¡Å ¡Ó𝑔𝑖𝑗/¡Ó𝜉𝑘 = 𝜞𝑖𝑘𝑗 + 𝜞𝑗𝑘𝑙 [a], ¡Ó𝑔𝑗𝑘/¡Ó𝜉𝑖 = 𝜞𝑗𝑖𝑘 + 𝜞𝑘𝑖𝑗 [b], ¡Ó𝑔𝑘𝑖/¡Ó𝜉𝑗 = 𝜞𝑘𝑗𝑖 + 𝜞𝑖𝑗𝑘 [c],  [b]+[c]-[a] ¡æ 𝜞𝑖𝑗𝑘= (1/2) (𝑔𝑗𝑘.𝑖+ 𝑔𝑘𝑖.𝑗- 𝑔𝑖𝑗.𝑘)   [14.3.10-14]
              ¡ñ 𝜞𝑝𝑖𝑗 = 𝑔𝑘𝑝 𝜞𝑖𝑗𝑘,  𝜞𝑝𝑖𝑗 = (1/2) 𝑔𝑘𝑝 (𝑔𝑗𝑘.𝑖+ 𝑔𝑘𝑖.𝑗- 𝑔𝑖𝑗.𝑘)  <- Á÷Á¢ »ç¿ëÀÌ º¹ÀâÇϹǷΠÁö¼ö°ª¿¡ µû¶ó ³ª´©¾î °è»êÇÔ   [14.3.15]
               * ½ÇÁ¦ÀÇ °è»ê ¹æ½Ä:  𝜞𝑘𝑖𝑗 = 0  [𝑖¡Á𝑗¡Á𝑘 ÀÏ ¶§],  [ÀÌÇÏ 𝑖̄𝑖̄, 𝑘̄𝑘̄: Áߺ¹ Áö¼ö ¹ÌÀû¿ë]  𝜞𝑘𝑖𝑖 = (-1/2 𝑔𝑘̄𝑘̄)(¡Ó𝑔𝑖̄𝑖̄/¡Ó𝜉𝑘)    [14.3.16,17]             
                                              𝜞𝑘𝑘𝑗 = 𝜞𝑘𝑗𝑘 = (1/2𝑔𝑘̄𝑘̄)(¡Ó𝑔𝑘̄𝑘̄/¡Ó𝜉𝑗) = (1/2){¡Ó ln(𝑔𝑘̄𝑘̄/¡Ó𝜉𝑗},    𝜞𝑘𝑘̄𝑘̄ = (1/2𝑔𝑘̄𝑘̄)(¡Ó𝑔𝑘̄𝑘̄/¡Ó𝜉𝑘)  [14.3.18,19]
           ex) ¿øÅë ÁÂÇ¥°è¿¡¼­ÀÇ 2Á¾ Christoffel ±âÈ£¸¦ ±¸ÇϽÿÀ.  ◂
                 𝜞212 = 𝜞221 = (1/2)¡Ó𝑔𝑘̄𝑘̄/¡Ó𝜉𝑗) = (1/2)¡Ó ln(𝑔22)/¡Ó𝜉1 = (1/2)¡Ó ln(𝑟2)/¡Ó𝑟 = 1/𝑟,  𝜞122 = -(1/2𝑔11)¡Ó𝑔22/¡Ó𝜉1 = -(1/2)¡Ó𝑟2)/¡Ó𝑟 = -𝑟,  ±âŸ: 0  ▮
        ∘ Unit basis vectorÀÇ ¹ÌºÐ: 𝐞𝑖 = 𝐠𝑖/¡î 𝑔𝑖̄𝑖̄,  𝐞𝑖.𝑗 = (1/¡î 𝑔𝑖̄𝑖̄) 𝐠𝑖.𝑗 + 𝐠𝑖(1/¡î 𝑔𝑖̄𝑖̄).𝑗  <- ¾çº¯À» 𝜉𝑗·Î ¹ÌºÐ   [14.3.22,23]
                (1/¡î 𝑔𝑖̄𝑖̄) 𝐠𝑖.𝑗= (1/¡î 𝑔𝑖̄𝑖̄) 𝜞𝑘𝑖𝑗) 𝐠𝑘 = (1/¡î 𝑔𝑖̄𝑖̄) 𝜞𝑘𝑖𝑗 (¡î 𝑔𝑘̄𝑘̄) 𝐞𝑘;  𝐠𝑖(1/¡î 𝑔𝑖̄𝑖̄).𝑗 = -{1/2(𝑔𝑖̄𝑖̄)3/2}𝑔𝑖̄𝑖̄.𝑗 𝐠𝑖 = -{1/2(𝑔𝑖̄𝑖̄)3/2}𝑔𝑖̄𝑖̄.𝑗¡î 𝑔𝑖̄𝑖̄ 𝐞𝑖   [14.3.24,25]
                = -(1/2𝑔𝑖̄𝑖̄) 𝑔𝑖̄𝑖̄.𝑗 𝐞𝑖;  ¡Å 𝐞𝑖.𝑗 = ¡î (𝑔𝑘̄𝑘̄/𝑔𝑖̄𝑖̄) 𝜞𝑘𝑖𝑗 𝐞𝑘 - (1/2𝑔𝑖̄𝑖̄) 𝑔𝑖̄𝑖̄.j 𝐞𝑖  <- 𝑖̄𝑖̄, 𝑘̄𝑘̄: dummy index ¹ÌÀû¿ë Ç¥±â   [14.3.25,26]
           ex) ¿øÅë ÁÂÇ¥°è (𝜉1 = 𝑟, 𝜉2 = 𝜃, 𝜉3 = 𝑧)¿¡¼­ÀÇ ´ÜÀ§ ±âÀú º¤ÅÍÀÇ ¹ÌºÐ°ªÀ» ±¸ÇϽÿÀ.  ◂
                 ¡Ó𝐞1/¡Ó𝜉1 = 𝐞1 𝜞111 ¡î 𝑔11/𝑔11 + 𝐞2 𝜞211 ¡î 𝑔22/𝑔11 + 𝐞3 𝜞311 ¡î 𝑔33/𝑔11 - 𝐞1(1/2𝑔11)(¡Ó𝑔11/¡Ó𝜉1 = 0   [14.3.27]
                 ¡Ó𝐞1/¡Ó𝜉2 = 𝐞1 𝜞111 ¡î 𝑔11/𝑔11 + 𝐞2 𝜞211 ¡î 𝑔22/𝑔11 + 𝐞3 𝜞311 ¡î 𝑔33/𝑔11 - 𝐞1(1/2𝑔11)(¡Ó𝑔11/¡Ó𝜉2 = 0   [14.3.28]
                 ¡Ó𝐞1/¡Ó𝑟 = 0,  ¡Ó𝐞2/¡Ó𝑟 = 0,  ¡Ó𝐞3/¡Ó𝑟 = 0,  ¡Ó𝐞1/¡Ó𝜃 = 𝐞2,  ¡Ó𝐞2/¡Ó𝜃 = -𝐞2,  ¡Ó𝐞3/¡Ó𝜃 = 0,  ¡Ó𝐞1/¡Ó𝑧 = 0,  ¡Ó𝐞2/¡Ó𝑧 = 0,  ¡Ó𝐞3/¡Ó𝑧 = 0  ▮   [14.3.29]
      d) TensorÀÇ ¹ÌºÐ:  2Â÷ tensor 𝐀 = 𝐴𝑖𝑗 𝐠𝑖 ⊗ 𝐠𝑗,  𝐀 = 𝐴𝑖𝑗 𝐠𝑖 ⊗ 𝐠𝑗,   𝐀 = 𝐴𝑖.𝑗 𝐠𝑖 ⊗ 𝐠𝑗 µîÀÇ ÁÂÇ¥¿¡ ´ëÇÑ ¹ÌºÐ
        ∘  ¡Ó𝐀/¡Ó𝜉𝑘 = (¡Ó𝐴𝑖𝑗/¡Ó𝜉𝑘) 𝐠𝑖 ⊗ 𝐠𝑗 + 𝐴𝑖𝑗 ¡Ó𝐠𝑖/¡Ó𝜉𝑘 ⊗ 𝐠𝑗 + 𝐴𝑖𝑗 𝐠𝑖 ⊗ ¡Ó𝐠𝑗/¡Ó𝜉𝑘 = (¡Ó𝐴𝑖𝑗/¡Ó𝜉𝑘) 𝐠𝑖 ⊗ 𝐠𝑗 + 𝐴𝑖𝑗 𝜞𝑚𝑖𝑘 𝐠𝑚 ⊗ 𝐠𝑗 + 𝐴𝑖𝑗 𝜞𝑚𝑗𝑘 𝐠𝑖 ⊗ 𝐠𝑚   [14.4.1,2]
                     = (¡Ó𝐴𝑖𝑗/¡Ó𝜉𝑘) 𝐠𝑖 ⊗ 𝐠𝑗 + 𝐴𝑚𝑗 𝜞𝑖𝑚𝑘 𝐠𝑖 ⊗ 𝐠𝑗 + 𝐴𝑖𝑚 𝜞𝑗𝑚𝑘 𝐠𝑖 ⊗ 𝐠𝑗 = (¡Ó𝐴𝑖𝑗/¡Ó𝜉𝑘 + 𝐴𝑚𝑗 𝜞𝑖𝑚𝑘 + 𝐴𝑖𝑚 𝜞𝑗𝑚𝑘) 𝐠𝑖 ⊗ 𝐠𝑗 = 𝐴𝑖𝑗𝑘 𝐠𝑖 ⊗ 𝐠𝑗   [14.4.3]
              ¡Å If 𝐀 = 𝐴𝑖𝑗 𝐠𝑖 ⊗ 𝐠𝑗, then ¡Ó𝐀/¡Ó𝜉𝑘 = 𝐴𝑖𝑗𝑘 𝐀 = (¡Ó𝐴𝑖𝑗/¡Ó𝜉𝑘 + 𝐴𝑚𝑗 𝜞𝑖𝑚𝑘 + 𝐴𝑖𝑚 𝜞𝑗𝑚𝑘) 𝐀 <- ÀÚ¿¬ ±âÀú vector¿¡ ´ëÇÑ contravariant ¹ÌºÐ   [14.4.4]
        ∘  ¡Ó𝐀/¡Ó𝜉𝑘 = (¡Ó𝐴𝑖𝑗/¡Ó𝜉𝑘) 𝐠𝑖 ⊗ 𝐠𝑗 + 𝐴𝑖𝑗 ¡Ó𝐠𝑖/¡Ó𝜉𝑘 ⊗ 𝐠𝑗 + 𝐴𝑖𝑗𝐠𝑖 ⊗ ¡Ó𝐠𝑗/¡Ó𝜉𝑘 =  (¡Ó𝐴𝑖𝑗/¡Ó𝜉𝑘 - 𝐴𝑚𝑗 𝜞𝑚𝑘𝑖 - 𝐴𝑖𝑚 𝜞𝑚𝑘𝑗) 𝐠𝑖 ⊗ 𝐠𝑗 = 𝐴𝑖𝑗𝑘 𝐠𝑖 ⊗ 𝐠𝑗   [14.4.5,6]
              ¡Å If 𝐀 = 𝐴𝑖𝑗 𝐠𝑖 ⊗ 𝐠𝑗, then  ¡Ó𝐀/¡Ó𝜉𝑘 = 𝐴𝑖𝑗𝑘 𝐀 = (¡Ó𝐴𝑖𝑗/¡Ó𝜉𝑘 - 𝐴𝑚𝑗 𝜞𝑚𝑘𝑖 - 𝐴𝑖𝑚 𝜞𝑚𝑘𝑗) 𝐀 <- ¿ª±âÀú vector¿¡ ´ëÇÑ covariant ¹ÌºÐ   [14.4.7]
        ∘   .... If 𝐀 = 𝐴𝑖.𝑗 𝐠𝑖 ⊗ 𝐠𝑗, then ¡Ó𝐀/¡Ó𝜉𝑘 = 𝐴𝑖.𝑗𝑘 𝐀 = (¡Ó𝐴𝑖.𝑗/¡Ó𝜉𝑘 + 𝐴𝑚.𝑗 𝜞𝑖𝑘𝑚 - 𝐴𝑖.𝑚 𝜞.𝑚𝑗𝑘) 𝐀 <- È¥ÇÕ ¼ººÐ¿¡ ´ëÇÑ ¹ÌºÐ   [14.4.8]
      e) Gradient(±¸¹è) :  𝛁𝜙  or  𝛁𝐮  or  𝛁𝐀  <- 𝛁 ¡Õ 𝐠𝑗 ¡Ó/¡Ó𝜉𝑗 »ç¿ë (ÀÌÇÏ µ¿ÀÏ)
        ∘ scala field ±¸¹è: 𝛁𝜙 ¡Õ 𝐠𝑗 ¡Ó𝜙/¡Ó𝜉𝑗;  𝛁𝜙  = 𝜙.𝑗 𝐠𝑗 or 𝜙.𝑗;  𝛁𝜙 =  𝜙.𝑗 𝐠𝑗 = 𝑔𝑖𝑗𝜙.𝑗 𝐠𝑖 = 𝑔𝑖𝑗¡î 𝑔𝑖̄𝑖̄ 𝜙.𝑗 𝐞𝑖   [14.5.1-3]
        ∘ vector field ±¸¹è: 𝐮 = 𝑢𝑖 𝐠𝑖 = 𝑢𝑖 𝐠𝑖 °æ¿ì
            𝛁𝐮 = 𝛁 ⊗ 𝐮 = 𝐠𝑗 ¡Ó𝐮/¡Ó𝜉𝑗 = 𝑢𝑖𝑗 𝐠𝑖 ⊗ 𝐠𝑗 =  𝑢𝑖𝑗 𝐠𝑖 ⊗ 𝐠𝑗  <- 𝑢𝑖𝑗 = 𝑢𝑖,𝑗 - 𝑢𝑘 𝜞𝑘𝑖𝑗,  𝑢𝑖𝑗 = 𝑢𝑖,𝑗 + 𝑢𝑘 𝜞𝑖𝑘𝑗  or  𝑢𝑖𝑗 = 𝑔𝑖𝑘𝑢𝑘𝑗   [14.5.5,6]       
        ∘ tensor field ±¸¹è: 𝐀 = 𝐴𝑖𝑗 𝐠𝑖 ⊗ 𝐠𝑗 = 𝐴𝑖.𝑗 𝐠𝑖 ⊗ 𝐠𝑗 °æ¿ì (´Ù¸¥ °æ¿ìµµ À¯»çÇÑ ¹æ¹ý Àû¿ë)
            𝛁𝐀 =  𝐠𝑘 ¡Ó𝐀/¡Ó𝜉𝑗 =  𝐴𝑖𝑗𝑘 𝐠𝑖 ⊗ 𝐠𝑗 ⊗ 𝐠𝑘 = 𝐴𝑖.𝑗𝑘 𝐠𝑖 ⊗ 𝐠𝑗 ⊗ 𝐠𝑘   [14.5.7]
      f) Divergence(¹ß»ê): 𝛁 ∙ 𝐮  or  𝛁 ∙ 𝐀
        ∘ vector field ¹ß»ê: 𝐮 = 𝑢𝑖 𝐠𝑖 °æ¿ì
              𝛁 ∙ 𝐮 = 𝐠𝑗 ¡Ó/¡Ó𝜉𝑗 ∙ 𝐮 =  𝐠𝑗 ∙ (𝑢𝑖 𝐠𝑖).𝑗 = 𝐠𝑗 ∙ 𝑢𝑖𝑗 𝐠𝑖 = 𝑢𝑖𝑗 𝐠𝑗 ∙ 𝐠𝑖 = 𝑢𝑖𝑗 𝛿𝑗𝑖 = 𝑢𝑖𝑖   [14.6.1]
             ¡Å 𝛁 ∙ 𝐮 = 𝑢𝑖𝑖 = ¡Ó𝑢𝑖/¡Ó𝜉𝑖 + 𝑢𝑘𝜞𝑖𝑘𝑖 = (1/¡î𝑔) ¡Ó ¡î𝑔 𝑢𝑖/¡Ó𝜉𝑖   [14.6.2]  <- ¡Ø ** why? À¯µµ °úÁ¤ÀÌ ¾øÀÌ ³ªÅ¸³²
              𝛁 ∙ 𝐮 = 𝑢𝑖𝑖 = (1/¡î𝑔){¡Ó(¡î𝑔 𝑢(𝑖)/¡î𝑔𝑖𝑖)/¡Ó𝜉𝑖}  (𝑢𝑖 = 𝑢(𝑖)/¡î𝑔𝑖𝑖)  or  𝛁 ∙ 𝐮 = tr(𝛁𝐮) = 𝛁𝐮 : 𝐈   [14.6.3,4]
             ex) ¿øÅë ÁÂÇ¥°è (𝜉1 = 𝑟, 𝜉2 = 𝜃,  𝜉3 = 𝑧)¿¡¼­ vector Àå 𝐮 = 𝑢𝑖 𝐠𝑖ÀÇ ¹ß»êÀ» ±¸ÇÏ°í ¹°¸®Àû ¼ººÐÀ¸·Î Ç¥½ÃÇϽÿÀ. ◂
                   𝛁 ∙ 𝐮 = (1/¡î𝑔)(¡Ó/¡Ó𝜉𝑖)(¡î 𝑔 𝑢𝑖) = (1/¡î 𝑔){(¡Ó/¡Ó𝜉1)(¡î 𝑔 𝑢1) + (¡Ó/¡Ó𝜉2)(¡î 𝑔 𝑢2) + (¡Ó/¡Ó𝜉3)(¡î 𝑔 𝑢3)}  
                           = 1/𝑟{(¡Ó/¡Ó𝑟)𝑟𝑢𝑟 + (¡Ó/¡Ó𝜃)𝑢𝜃 + (¡Ó/¡Ó𝑧)𝑟𝑢𝑧} = ¡Ó𝑢𝑟/¡Ó𝑟 + (1/𝑟)(¡Ó𝑢𝜃/¡Ó𝜃 + 𝑢𝑟) + ¡Ó𝑢𝑧/¡Ó𝑧   [14.6.5]  
                   𝑔11 = 𝑔33 = 1,  𝑔22 = 𝑟2 ±âŸ: 0,  𝑔 (¡Õ det [𝑔𝑖𝑗]) = 𝑟2,  𝐞𝑖 = 𝐠𝑖/¡«𝐠¡« = 𝐠𝑖/¡î 𝑔𝑖̄𝑖̄;  ¹°¸®Àû ¼ººÐ 𝑢1 = 𝑢𝑟,  𝑢2 = 𝑢𝜃/𝑟,  𝑢3 = 𝑢𝑧 ▮          
        ∘ tensor field ¹ß»ê: 𝐀 = 𝐴𝑖𝑗 𝐠𝑖 ⊗ 𝐠𝑗 °æ¿ì
                  𝛁 ∙ 𝐀 = 𝐠𝑘 ∙ ¡Ó𝐀/¡Ó𝜉𝑘 = 𝐠𝑘 ∙ 𝐴𝑖𝑗𝑘 𝐠𝑖 ⊗ 𝐠𝑗 = 𝐴𝑖𝑗𝑘 (𝐠𝑘 ∙ 𝐠𝑖) 𝐠𝑗 = 𝐴𝑖𝑗𝑘 𝛿𝑘𝑖 𝐠𝑗 = 𝐴𝑖𝑗𝑖 𝐠𝑗  <- tensorÀÇ ¹ÌºÐ,  𝐚 ∙ (𝐛 ⊗ 𝐜) = (𝐚 ∙ 𝐛) 𝐜   [14.6.7-9]
      g) Laplacian: 𝛁2𝜙  or  𝛁2𝐯
              𝛁2 = 𝛁 ∙ 𝛁 = 𝐠𝑖 ¡Ó/¡Ó𝜉𝑖 ∙ (𝐠𝑗 ¡Ó/¡Ó𝜉𝑖) = 𝐠𝑖 (¡Ó𝐠𝑗/¡Ó𝜉𝑖)(¡Ó/¡Ó𝜉𝑖) + 𝐠𝑖 ∙ 𝐠𝑗 ¡Ó2/(¡Ó𝜉𝑖¡Ó𝜉𝑗)  <- by product rule
                                 = 𝑔𝑖𝑘 𝐠𝑘 ∙ (¡Ó𝐠𝑗/¡Ó𝜉𝑖)(¡Ó/¡Ó𝜉𝑖) + 𝑔𝑖𝑗(¡Ó2/¡Ó𝜉𝑖¡Ó𝜉𝑗) = 𝑔𝑖𝑗(¡Ó2/¡Ó𝜉𝑖¡Ó𝜉𝑗) - 𝑔𝑖𝑘𝜞𝑗𝑖𝑘(¡Ó/¡Ó𝜉𝑖)  <- metric tensor, kronecker delta   [14.7.1]
             ¡Å 𝛁2 = 𝑔𝑖𝑗(¡Ó2/¡Ó𝜉𝑖¡Ó𝜉𝑗) - 𝑔𝑖𝑘𝜞𝑗𝑖𝑘(¡Ó/¡Ó𝜉𝑖)   [14.7.2]
        ∘ scala field Laplacian: 𝛁2𝜙 = 𝛁 ∙ 𝐯 = (1/¡î𝑔) ¡Ó¡î𝑔 𝑣𝑖/¡Ó𝜉𝑖 = (1/¡î𝑔) ¡Ó¡î𝑔 𝑔𝑗𝑖𝜙.𝑖/¡Ó𝜉𝑖  <- vector field ¹ß»ê, scalarÀÇ ±¸¹è, 𝑣𝑖 =  𝑔𝑗𝑖𝜙.𝑖   [14.7.3]
        ∘ vector field Laplacian: 𝛁2𝐯 = 𝑔𝑖𝑗¡Ó2𝐯/¡Ó𝜉𝑖¡Ó𝜉𝑗 - 𝑔𝑖𝑘𝜞𝑗𝑖𝑘¡Ó𝐯/¡Ó𝜉𝑖   [14.7.6]

p.s.  * why? [14.2.19]: vector (𝐚 ∙ 𝐛) 𝐜 = 𝐚 (𝐛 ∙ 𝐜) °ü°è½ÄÀÌ ¼º¸³ÇÏ´ÂÁö´Â ³ªÁß¿¡ ...


Name
Spamfree

     ¿©±â¸¦ Ŭ¸¯ÇØ ÁÖ¼¼¿ä.

Password
Comment

  ´ä±Û¾²±â   ¸ñ·Ïº¸±â
¹øÈ£ Á¦               ¸ñ À̸§ ¿¬°ü ³¯Â¥ Á¶È¸
121              Waves  5. Electromagnetic wave equation    ±è°ü¼® 8 2024-05-07
09:24:42
1306
120                Waves  6. Quantum wave equation    ±è°ü¼® 8 2024-05-07
09:24:42
1306
119  Gravirational Collapse and Space-Time Singularities  📚 🔵    ±è°ü¼® 1 2023-06-12
13:50:03
5482
118  Mathematics of Astronomy  1. Gravity; Light  ✅    ±è°ü¼® 4 2023-05-02
08:31:40
1542
117    Mathematics of Astronomy  2. Parallax, angular size etc.      ±è°ü¼® 4 2023-05-02
08:31:40
1542
116      Mathematics of Astronomy  3. Stars    ±è°ü¼® 4 2023-05-02
08:31:40
1542
115        Mathematics of Astronomy  4. Black holes & cosmology    ±è°ü¼® 4 2023-05-02
08:31:40
1542
114   StillÀÇ <ºí·ÏÀ¸·Î ¼³¸íÇÏ´Â ÀÔÀÚ¹°¸®ÇÐ>  ✅    ±è°ü¼® 3 2022-04-14
18:49:01
1048
113    BeckerÀÇ <½ÇÀç¶õ ¹«¾ùÀΰ¡?>    ±è°ü¼® 3 2022-04-14
18:49:01
1048
112      PenroseÀÇ <½Ã°£ÀÇ ¼øȯ> (°­Ãß!) [u. 5/2023]  🌹    ±è°ü¼® 3 2022-04-14
18:49:01
1048
111  ÀϹݻó´ë¼º(GR) ÇнÀ¿¡ ´ëÇÏ¿©..    ±è°ü¼® 1 2022-01-03
09:49:28
370
110  HTML(+) ¸®ºä/ȨÆäÀÌÁö ¿î¿ë^^  [1]  ±è°ü¼® 1 2021-11-08
16:52:09
249
109  PeeblesÀÇ Cosmology's Century (2020)    ±è°ü¼® 1 2021-08-16
21:08:03
439
108  <ÇѱÇÀ¸·Î ÃæºÐÇÑ ¿ìÁÖ·Ð> ¿Ü  ✅    ±è°ü¼® 5 2021-06-06
13:38:14
2248
107    RovelliÀÇ <º¸ÀÌ´Â ¼¼»óÀº ½ÇÀç°¡ ¾Æ´Ï´Ù>    ±è°ü¼® 5 2021-06-06
13:38:14
2248
106      SmolinÀÇ <¾çÀÚ Áß·ÂÀÇ ¼¼°¡Áö ±æ>    ±è°ü¼® 5 2021-06-06
13:38:14
2248
105        SusskindÀÇ <¿ìÁÖÀÇ Ç³°æ> (°­Ãß!)  🌹    ±è°ü¼® 5 2021-06-06
13:38:14
2248
104          ´ëÁßÀû ¿ìÁÖ·Ð Ãßõ¼­ ¸ñ·Ï [u. 9/2021]  [1]  ±è°ü¼® 5 2021-06-06
13:38:14
2248
103  Zel'dovich's Relativistic Astrophysics  ✅    ±è°ü¼® 1 2021-04-01
08:16:42
1333
102  Dirac Equation and Antimatter    ±è°ü¼® 1 2021-03-15
12:49:45
597
101  11/30 žç ÈæÁ¡ sunspots  ✅    ±è°ü¼® 2 2020-11-30
16:14:27
1011
100    Coronado PST ÅÂ¾ç »çÁø^^    ±è°ü¼® 2 2020-11-30
16:14:27
1011
99  Linde's Inflationary Cosmology [u. 1/2021]    ±è°ü¼® 1 2020-11-06
09:19:06
907
98  The Schrödinger Equation (7) Harmonic Oscillator  ✅    ±è°ü¼® 1 2020-09-17
21:43:31
2720
97  Çö´ë ¿ìÁÖ·ÐÀÇ ¸íÀú WeinbergÀÇ <ÃÖÃÊÀÇ 3ºÐ>  ✅    ±è°ü¼® 3 2020-08-09
11:37:44
1430
96    ¹°¸®Çеµ¸¦ À§ÇÑ Çö´ë ¿ìÁַм­´Â?    ±è°ü¼® 3 2020-08-09
11:37:44
1430
95      Çö´ë ¿ìÁÖ·ÐÀÇ ÃÖ°í, ÃÖ½Å, °íÀü¼­.. [u. 10/2024]   [1]  ±è°ü¼® 3 2020-08-09
11:37:44
1430
94   Mathematical Cosmology 1. Overview  🔵    ±è°ü¼® 6 2020-06-07
16:23:00
5715
93    Mathematical Cosmology 2. FRW geometry     ±è°ü¼® 6 2020-06-07
16:23:00
5715
92      Mathematical Cosmology 3. Cosmological models I    ±è°ü¼® 6 2020-06-07
16:23:00
5715
91        Mathematical Cosmology 4. Cosmological models II    ±è°ü¼® 6 2020-06-07
16:23:00
5715
90          Mathematical Cosmology 5. Inflationary cosmology    ±è°ü¼® 6 2020-06-07
16:23:00
5715
89            Mathematical Cosmology 6. Perturbations    ±è°ü¼® 6 2020-06-07
16:23:00
5715
88  Hobson Efstathiou Lasenby GR 11a. Schwartzschild ºí·¢È¦  🔴  [2]  ±è°ü¼® 3 2020-05-13
13:44:21
17694
87    Hobson et al. GR 11b. Áß·ÂÀÇ ºØ±«, ºí·¢È¦ Çü¼º    ±è°ü¼® 3 2020-05-13
13:44:21
17694
86      Hobson et al. GR 11c. ¿úȦ, Hawking È¿°ú    ±è°ü¼® 3 2020-05-13
13:44:21
17694

    ¸ñ·Ïº¸±â   ÀÌÀüÆäÀÌÁö   ´ÙÀ½ÆäÀÌÁö     ±Û¾²±â [1] 2 [3][4][5]
    

Copyright 1999-2025 Zeroboard / skin by zero & Artech