±âº» ÆäÀÌÁö Æ÷Æ®Æú¸®¿À ´ëÇѹα¹ÀÇ ÀüÅë°ÇÃà Áß±¹°ú ÀϺ»ÀÇ ÀüÅë°ÇÃà ¼­À¯·´°ú ¹Ì±¹ÀÇ °ÇÃà ±¹¿ª û¿À°æ Çö´ë ¿ìÁÖ·Ð ´ëÇѹα¹ÀÇ »êdz°æ ¹éµÎ´ë°£ Á¾ÁÖ»êÇà ³×ÆÈ È÷¸»¶ó¾ß Æ®·¹Å· ¸ùºí¶û Áö¿ª Æ®·¹Å· ¿ä¼¼¹ÌƼ ij³â µî Ƽº£Æ® ½ÇÅ©·Îµå ¾ß»ý »ý¹° Æijë¶ó¸¶»çÁø °¶·¯¸® Ŭ·¡½Ä ·¹ÄÚµå °¶·¯¸® AT Æ÷·³ Æ®·¹Å· Á¤º¸ ¸µÅ©


 ·Î±×ÀÎ  È¸¿ø°¡ÀÔ

¹ÌºÐ±âÇÏÇÐ(DG) 1. °î¼±; Gauss °î·ü; °î¸é  🔵
    ±è°ü¼®  2019-06-16 16:50:51, Á¶È¸¼ö : 1,059
- Download #1 : dff_1_1.jpg (47.4 KB), Download : 1



  Áß·Â(gravity)Àº ½Ã°ø°£ÀÇ curvature * ÈÖ¾îÁüÀÇ ¹ßÇöÀ̶ó´Â ¾ÆÀν´Å¸ÀÎÀÇ »ó´ë¼ºÀÌ·ÐÀÇ ÀÌÇظ¦ À§Çؼ­ °ø°£°ú ½Ã°£À»
  ±âÇÏÇÐÀû ÀÌ·ÐÀ¸·Î¼­ ÆľÇÇÏ´Â °ÍÀÌ ÀÌ Ã¥ÀÇ ±Ã±ØÀûÀÎ ¸ñÇ¥ÀÔ´Ï´Ù. ±× Áß¿¡¼­´Â ¹Ù·Î curvature°¡ ÁÖÃàÀÌ µÇ´Â °³³äÀÔ´Ï´Ù.
   curvatureÀÇ °³³äÀº 4Â÷¿ø À̻󿡼­´Â ´õ¿í º¹ÀâÇØÁö¹Ç·Î, Euclid 3Â÷¿ø °ø°£ E3¿¡¼­ÀÇ curvature¸¦ ¸ÕÀú ³íÀÇÇÕ´Ï´Ù.

1. Curves ÍØàÊ <- Figure I-1 ÂüÁ¶

     ∘  𝛂(t) = (x(t),y(t),z(t))  <- 𝛂: vector-valued fuction curve in 𝐄3, a ¡Â t ¡Â b, t: real variable parameter ØÚ˿ܨ⦠ 
     ∘  𝛂'(t) = (x'(t),y'(t),z'(t)) = lim𝛥¡æ0 [𝛂(t + 𝛥t) - 𝛂(t))]/𝛥t  <- 𝛂': derivative vector of curve 𝛂  
     ∘  s(t) = ¡òat¡«𝛂'(u)¡«du  <- s: arc length of curve 𝛂, t: time, ¡«𝛂'(u)¡«: instaneous speed áÜÕô,  𝛂': velocity vector
     ∘  𝐋 = ¡òab¡«𝛂'(u)¡«du  <- 𝐋: total length of the entire curve 𝛂(t), a ¡Â t ¡Â b, 𝐈: interval
     ∘  𝛂"(t) = (x"(t),y"(t),z"(t))  <- 𝛂": derivative of velocity vector 𝛂',  𝛂": acceleration vector 
     ∘  𝐓(s) = 𝛂'(s)  <-  t = s ¡æ  ds/dt = 1,  𝛂'(s) or 𝐓(s): unit tangent vector,  𝛂(s): unit speed curve
     ∘  𝐓(s) ∙ 𝐓(s) = 1, ¡Å 𝐓(s) ∙ 𝐓'(s) = 0  (<- by product rule) ¡Å 𝐓(s)¡Ñ𝐓'(s),  𝛂"(s) or 𝐓'(s): curvature vector

     ∘  Definition I-1
        k(s) = ¡«𝐓'(s)¡«= ¡«𝛂"(s)¡«
        k(s)·Î ÁöĪµÇ´Â °î¼± 𝛂ÀÇ 𝛂(s)¿¡¼­ÀÇ curvature ÍØáãÀº 𝐓'(s)ÀÇ ±æÀÌÀÌ´Ù.

     ∘  𝐍(s) = 𝐓'(s)/¡«𝐓'(s)¡«= 𝐓'(s)/k(s). ¡Å 𝐓'(s) = k(s)𝐍(s)   <- 𝐍(s): principal normal vector
     ∘  c(s) = 𝛂(s) + [1/k(s)]/𝐍(s)  <- 𝛂(s): °î¼± 𝛂¿¡ÀÇ tangent point, c(s): center of curvature
        osculating circle ïÈõºê­: ¹ÝÁö¸§ 1/k(s), Á᫐ c(s)ÀÇ ¿ø,  osculating plane: 𝐓(s)¿Í 𝐍(s)ÀÇ Æò¸é
     ∘  𝐁 = 𝐓 X 𝐍   <- binormal vector of the unit length: osculating plane¿¡ ¼öÁ÷ÀÎ vector
        𝐁' = (𝐓 X 𝐍)' = 𝐓' X 𝐍 + 𝐓 X 𝐍' = 0 + 𝐓 X 𝐍'= 𝐓 X 𝐍' (¡ñ 𝐓'= k𝐍)
        𝐍 = 𝐁 X 𝐓, 𝐓 = 𝐍 X 𝐁,  𝐍¡Ñ𝐁, 𝐍¡Ñ𝐍',  𝐁'¡Ñ𝐁, 𝐁'¡Ñ𝐍'  ¡Å 𝐁' ¡ð𝐍
     ∘  𝐁'  = - 𝜏𝐍  <- 𝜏 = 𝜏(s): torsion ºñƲ¸²(²¿ÀÓ) ÇÔ¼ö·Î¼­ osculating planeÀÇ turning rate(üÞï® Ýïáã)¸¦ ÃøÁ¤ÇÔ.
     ∘  𝐓' = k𝐍,  𝐍' = - k𝐓 + 𝜏𝐁,  𝐁'  = - 𝜏𝐍  <- the Formulas of Frenet

         ¾ÆÁÖ °£·«ÇÏ°Ô ¿ä¾àÇÑ ÀÌ»óÀÇ °ü°è½ÄÀ» Á¦´ë·Î ÀÌÇØÇÑ´Ù¸é ¿ì¸®´Â 3Â÷¿ø¿¡¼­ÀÇ ÀÓÀÇÀÇ °î¼±À» Çؼ®/ÀçÇöÇÒ ¼ö ÀÖ½À´Ï´Ù.

2. Gauss Curvature I <- Figure I-10 ÂüÁ¶   

     ∘  ¸Å²ô·¯¿î(smooth) °î¸é(surface) 𝐌 ¡ø 𝐄3¿¡ ÀÓÀÇÀÇ Á¡ 𝐏¿¡ unit normal vector¸¦ 𝐔¶ó°í ÇÕ´Ï´Ù. À̶§ 𝐯°¡ Á¡ 𝐏¿¡¼­
         𝐌¿¡ Á¢Çϴ unit vector¶ó¸é, ±× 𝐯¿¡ ÀÇÁ¸ÇÏ´Â 𝛂𝐯 °î¼±ÀÌ ÀÖ´Â 𝐌°ú 𝐏¿¡¼­ ±³Â÷ÇÏ´Â Æò¸éÀº 𝐯¿Í 𝐔¿¡ ÀÇÇØ °áÁ¤µË´Ï´Ù.
         ±×·¡¼­ ¿ì¸®´Â 𝛂𝐯¸¦ °î¸é 𝐌ÀÇ Á¡ 𝐏¿¡¼­ÀÇ normal section in the 𝐯 direction À̶ó°í ºÎ¸¨´Ï´Ù.
     ∘  𝐤n(𝐯) = ∓1/ 𝐑(𝐯)  <- 𝐑(𝐯): osculating circle ¹Ý°æ,  𝐤n(𝐯): 𝐌ÀÇ 𝐏¿¡¼­ normal curvature in the 𝐯 direction         
         𝛂𝐯ÀÇ principal normal vector¿Í surface normal vectorÀÎ 𝐔ÀÇ ¹æÇâÀÌ µ¿ÀÏÇϸé +, ¹Ý´ëÀ̸é -, curvature°¡ 0À̸é 0.
     ∘  Gauss curvature 𝐊 (𝐌ÀÇ 𝐏¿¡¼­)¶õ?
         𝐊(𝐏) = 𝐤1 𝐤2  <-  𝐯1: tangent vector in a principal direction  𝐤1: maxinmum value of 𝐤n(𝐯),
                                 𝐯2: tangent vector in a principal direction  𝐤2: minimum value of 𝐤n(𝐯), 𝐯1 and  𝐯1: Ç×»ó Á÷±³ÇÔ.
         ex1)  𝐊  in a cylinder: (¹Ý°æ RÀÎ °æ¿ì) 𝐤1= 1/R, 𝐤2= 0  ¡Å 𝐊 = 0
         ex2)  𝐊  in a sphere: (¹Ý°æ RÀÎ °æ¿ì) 𝐤n(𝐯) = ∓1/R2
         ex3)  𝐊  in a sddle-shaped surface: z = 1/2(y2 - x2),  𝐊 < 0  
         ex4)  𝐊  in a torus:  𝐊 > 0 on outside surface,  𝐊 > 0 on inside surface, 𝐊 = 0 on two circle of top and bottom
  
         CurvatureÀÇ intrinsic Ò®î¤îÜ Ç¥±â ´öºÐ¿¡ ÀϹݻó´ë¼º¿ø¸®ÀÇ 4Â÷¿ø ½Ã°ø°£ curvature¸¦ Á¤ÀÇÇÒ ¼ö ÀÖ½À´Ï´Ù. 
         GaussÀÇ Therema Egregium (»©¾î³­ ïÒ×â)·Î ÀýÁ¤À» ÀÌ·ç´Â °î¸é ÀÌ·Ð ´öºÐ¿¡ intrinsic Ç¥±â°¡ °¡´ÉÇØÁ³½À´Ï´Ù.
         intrinsicÇÑ curvatureÀÇ Àç°ø½ÄÈ­´Â °íÂ÷¿øÀÇ manifold ÒýåÆô÷¿Í 'curved space'¸¦ ÀϹÝÈ­ÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù.

3. Surfaces ÍØØü in E3 <- Figure I-20 ÂüÁ¶  

     ∘  °î¸é 𝐌Àº 𝓡2ÀÇ open subset 𝐃¿¡ Á¤ÀÇµÈ µÎ°³ º¯¼öÀÇ vector ÇÔ¼ö 𝐗:𝐃 ¡æ E3ÀÇ image·Î locally(ÏÑá¶îÜÀ¸·Î) Ç¥±â °¡´É                  
           𝐗 = 𝐗(u,v) = (x(u,v), y(u,v), z(u,v))   [3-2]
     ∘  ÆíÀÇ»ó ¿ì¸®´Â ÀÌ ÇÔ¼ö¸¦ 𝐃¿¡¼­ ÃÖ¼Ò »ïÂ÷±îÁö ¹ÌºÐÇÒ ¼ö ÀÖÀ¸¸ç, 𝐗°¡ regular ïáöÎîÜÀÏ ¶§´Â ´ÙÀ½ÀÇ °æ¿ì
           𝐗1(u, v) = ¡Ó𝐗/¡Óu = (¡Óx/¡Óu, ¡Óy/¡Óu, ¡Óz/¡Óu)
           𝐗2(u, v) = ¡Ó𝐗/¡Óv = (¡Óx/¡Óv, ¡Óy/¡Óv, ¡Óz/¡Óv)
         »ó±â µÎ vector´Â 𝐃ÀÇ °¢ (u,v)¿¡ ´ëÇØ linearlly independnt(àÊû¡ Լء)ÇÏ¿©¼­, 𝐗1 X 𝐗2 ¡Á 0 in 𝐃.  
     ∘  ÀϹÝÀûÀ¸·Î regularity(ïáöÎàõ)Àº 𝐃ÀÇ °¢ Á¡µéÀÌ neighborhood(ÐÎÛ¨) 𝛺¸¦ °®À¸¸ç, ÀÌ¿¡ ´ëÇØ ÇÔ¼ö 𝐗°¡
         ¿¬¼ÓÀûÀÎ inverse function(æ½ùÞâ¦) 𝐗(𝛺) ¡æ 𝛺 ¸¦ °®´Â one-to-one(ìéÓßìé)ÀÇ °ü°è¸¦ º¸ÀåÇÕ´Ï´Ù. ±×·¡¼­
         ÀÌ·¯ÇÑ ´ëÀÀÀ» system of curvillinear coordinate(ÍØàÊ ñ¨øöͧ) u, v on 𝐗(𝛺) ¡ø 𝐌À¸·Î »ý°¢ÇÒ ¼ö ÀÖ½À´Ï´Ù.
     ∘  𝛂(t) = 𝐗 (u(t), v(t))  <- 𝐃¿¡¼­ u(t), v(t)°¡ smooth °î¼±À̸é,  𝐗¿¡ ÀÇÇÑ imageµµ 𝐌¿¡¼­ 𝛂µµ smooth °î¼±
            𝛂'(t) = (¡Ó𝐗/¡Óu)(du/dt) +  (¡Ó𝐗/¡Óv)(dv/dt)  <- by chain rule
            𝛂'(t) = u'𝐗1 + v'𝐗2  <- in abbriviated notation   [3-3]

     ∘  Definition I-2
         𝐌¿¡¼­ 𝐏¸¦ Åë°úÇÏ´Â °î¼±ÀÇ velociy vector 𝐯°¡ 𝐏¿¡ ÀÖÀ¸¸é, vector 𝐯¸¦ 𝐏¿¡¼­ 𝐌À¸·ÎÀÇ tangent vector ¶ó ºÎ¸¥´Ù.
         𝐏¿¡¼­ 𝐌À¸·ÎÀÇ ¸ðµç tangent vectorÀÇ ÁýÇÕÀº 𝐏¿¡¼­ 𝐌ÀÇ tangent plane ¶ó°í ºÎ¸£°í, 𝐓p𝐌À¸·Î Ç¥±âÇÑ´Ù.

     ∘  𝐏¿¡¼­ÀÇ ¾î¶² tangent vector 𝐗(u0, v0)´Â  𝐗1(u0, v0)°ú 𝐗1(u0, vo)ÀÇ ÇÑ linear combinationÀÔ´Ï´Ù.
         °Å²Ù·Î ½Ç¼ö a, b¿ÍÀÇ linear combination 𝐯 = (a𝐗1 + b𝐗2)(u0, v0)´Â 𝐌¿¡ ÀÖ´Â ÇÑ °î¼±ÀÇ velocity vectorÀÔ´Ï´Ù.
         ¿¹¸¦ µé¸é 𝛂(t) = 𝐗(u0+ at, v0+ bt)´Â   𝛂'(0) = 𝐯 ¸¦ °®½À´Ï´Ù. ±×·¡¼­ regurality(ïáöÎàõ) of 𝐗¶õ 𝐓p𝐌°¡
         𝐗1°ú  𝐗2¸¦ basis(±âÀú)·Î ÇÏ´Â °¢ Á¡ 𝐏¿¡¼­ÀÇ 2-dimensional vector space¸¦ ÀǹÌÇÏ´Â °ÍÀÔ´Ï´Ù.
         À̶§ 𝐗1(u0, v0)°ú 𝐗2(u0, v0)´Â ±×µé ÀÚ½ÅÀÌ ±× °î¼±ÀÇ velocity vectors
            u¡æ 𝐗 (u, v0)     (v = v0, fixed)   <- u-parameter curve
            v¡æ 𝐗 (u0, v)     (u = u0, fixed)   <- v-parameter curve

p.s. Richard L. Faber Differential Geometry and Relativity Theory (Marcel Deckker 1983) Chapter I.
       ¹ÌºÐ±âÇÏÇаú »ó´ë¼º ¿ø¸®¿¡ °ü½ÉÀ» µÐ ¿µ¾î±Ç ´ëÇб³ ¼öÇаú/¹°¸®Çаú °íÇгâ»ýµéÀ» ´ë»óÀ¸·Î ÁýÇʵǾú´Ù ÇÔ.
       ¿©·¯ GRÃ¥µéÀ» »ìÆì º¸´Ù°¡ ¼öÇÐÀû rigor¿Í ¹ÙÅÁÀÌ ÇÊ¿äÇÑ Á¦°Ô ¾ÆÁÖ ÀûÇÕÇÑ Ã¥À¸·Î »ý°¢µÇ¾î ¼±Á¤ÇÏ¿´À½.
       * curvature´Â ¹®¸Æ¿¡ µû¶ó ÈÖ¾îÁü ÀÚü¸¦ ÀǹÌÇϰųª °î·üÀ» ÁöĪ


Name
Spamfree

     ¿©±â¸¦ Ŭ¸¯ÇØ ÁÖ¼¼¿ä.

Password
Comment

  ´ä±Û¾²±â   ¸ñ·Ïº¸±â
¹øÈ£ Á¦               ¸ñ À̸§ ¿¬°ü ³¯Â¥ Á¶È¸
106      SmolinÀÇ <¾çÀÚ Áß·ÂÀÇ ¼¼°¡Áö ±æ>    ±è°ü¼® 5 2021-06-06
13:38:14
2125
105        SusskindÀÇ <¿ìÁÖÀÇ Ç³°æ> (°­Ãß!)  🌹    ±è°ü¼® 5 2021-06-06
13:38:14
2125
104          ´ëÁßÀû ¿ìÁÖ·Ð Ãßõ¼­ ¸ñ·Ï [u. 9/2021]  [1]  ±è°ü¼® 5 2021-06-06
13:38:14
2125
103  Zel'dovich's Relativistic Astrophysics  ✅    ±è°ü¼® 1 2021-04-01
08:16:42
1213
102  Dirac Equation and Antimatter    ±è°ü¼® 1 2021-03-15
12:49:45
561
101  11/30 žç ÈæÁ¡ sunspots    ±è°ü¼® 2 2020-11-30
16:14:27
987
100    Coronado PST ÅÂ¾ç »çÁø^^    ±è°ü¼® 2 2020-11-30
16:14:27
987
99  Linde's Inflationary Cosmology [u. 1/2021]    ±è°ü¼® 1 2020-11-06
09:19:06
893
98  The Schrödinger Equation [¿Ï·á] (7) Harmonic Oscillator  ✅    ±è°ü¼® 1 2020-09-17
21:43:31
2703
97  ¿ìÁÖ·ÐÀÇ ¸íÀú WeinbergÀÇ <ÃÖÃÊÀÇ 3ºÐ>  ✅    ±è°ü¼® 3 2020-08-09
11:37:44
1373
96    ¹°¸®Çеµ¸¦ À§ÇÑ ¿ìÁַм­´Â?    ±è°ü¼® 3 2020-08-09
11:37:44
1373
95      ¿ìÁÖ·ÐÀÇ ÃÖ°í, ÃÖ½Å, °íÀü¼­..    ±è°ü¼® 3 2020-08-09
11:37:44
1373
94   Mathematical Cosmology 1. Overview  🔵    ±è°ü¼® 6 2020-06-07
16:23:00
5214
93    Mathematical Cosmology 2. FRW geometry     ±è°ü¼® 6 2020-06-07
16:23:00
5214
92      Mathematical Cosmology 3. Cosmological models I    ±è°ü¼® 6 2020-06-07
16:23:00
5214
91        Mathematical Cosmology 4. Cosmological models II    ±è°ü¼® 6 2020-06-07
16:23:00
5214
90          Mathematical Cosmology 5. Inflationary cosmology    ±è°ü¼® 6 2020-06-07
16:23:00
5214
89            Mathematical Cosmology 6. Perturbations    ±è°ü¼® 6 2020-06-07
16:23:00
5214
88  Hobson Efstathiou Lasenby GR 11a. Schwartzschild ºí·¢È¦  🔴  [2]  ±è°ü¼® 3 2020-05-13
13:44:21
17636
87    Hobson et al. GR 11b. Áß·ÂÀÇ ºØ±«, ºí·¢È¦ Çü¼º    ±è°ü¼® 3 2020-05-13
13:44:21
17636
86      Hobson et al. GR 11c. ¿úȦ, Hawking È¿°ú    ±è°ü¼® 3 2020-05-13
13:44:21
17636
85  Hobson Efstathiou Lasenby GR 19. ÀϹݻó´ë¼ºÀÇ º¯ºÐÀû Á¢±Ù    ±è°ü¼® 1 2020-04-16
07:13:39
546
84  Dirac's GR [¿Ï·á] 35. ¿ìÁÖÇ× [u. 3/2020]   🔵  [2]  ±è°ü¼® 1 2020-01-22
08:59:01
3642
83  1/20 ±º¾÷¸®ÀÇ Orion ¼º¿î^^    ±è°ü¼® 1 2020-01-20
23:28:21
438
82  º¤ÅÍ¿Í ÅÙ¼­ [¿Ï·á] 6. ÅÙ¼­ ÀÀ¿ë [u. 1/2020]    ±è°ü¼® 1 2020-01-01
19:32:21
528
81  2019³â ³ëº§¹°¸®Çлó - PeeblesÀÇ ¹°¸®Àû ¿ìÁַР  ✅    ±è°ü¼® 1 2019-10-14
19:30:49
1201
80  ÀϹݻó´ë¼º(GR) 1. µî°¡¿ø¸®; Á߷°ú °î·ü   🔵    ±è°ü¼® 5 2019-09-06
09:38:00
4347
79    ÀϹݻó´ë¼º 2. Newton Á߷·РÀç°ËÅä    ±è°ü¼® 5 2019-09-06
09:38:00
4347
78      ÀϹݻó´ë¼º 3. Ư¼ö»ó´ë¼º; ÃøÁö¼±    ±è°ü¼® 5 2019-09-06
09:38:00
4347
77        ÀϹݻó´ë¼º 4. Einstein Àå¹æÁ¤½Ä ***    ±è°ü¼® 5 2019-09-06
09:38:00
4347
76          ÀϹݻó´ë¼º 5. Schwarzschild ÇØ    ±è°ü¼® 5 2019-09-06
09:38:00
4347
 ¹ÌºÐ±âÇÏÇÐ(DG) 1. °î¼±; Gauss °î·ü; °î¸é  🔵    ±è°ü¼® 4 2019-06-16
16:55:58
4695
74    ¹ÌºÐ±âÇÏÇÐ 2. Á¦Àϱ⺻Çü½Ä; Á¦À̱⺻Çü½Ä    ±è°ü¼® 4 2019-06-16
16:55:58
4695
73      ¹ÌºÐ±âÇÏÇÐ 3. Gauss °î·ü II; ÃøÁö¼± [u. 12/2019]  [1]  ±è°ü¼® 4 2019-06-16
16:55:58
4695
72        ¹ÌºÐ±âÇÏÇÐ 4. Riemann °î·üÅÙ¼­; ´Ù¾çü    ±è°ü¼® 4 2019-06-16
16:55:58
4695
71  5/28 ±º¾÷¸®ÀÇ ÀºÇϼö^^    ±è°ü¼® 1 2019-05-30
01:20:31
800

    ¸ñ·Ïº¸±â   ÀÌÀüÆäÀÌÁö   ´ÙÀ½ÆäÀÌÁö     ±Û¾²±â [1] 2 [3][4]
    

Copyright 1999-2024 Zeroboard / skin by zero & Artech