±è°ü¼®
|
2019-06-16 16:50:51, Á¶È¸¼ö : 1,059 |
- Download #1 : dff_1_1.jpg (47.4 KB), Download : 1
Áß·Â(gravity)Àº ½Ã°ø°£ÀÇ curvature * ÈÖ¾îÁüÀÇ ¹ßÇöÀ̶ó´Â ¾ÆÀν´Å¸ÀÎÀÇ »ó´ë¼ºÀÌ·ÐÀÇ ÀÌÇظ¦ À§Çؼ °ø°£°ú ½Ã°£À»
±âÇÏÇÐÀû ÀÌ·ÐÀ¸·Î¼ ÆľÇÇÏ´Â °ÍÀÌ ÀÌ Ã¥ÀÇ ±Ã±ØÀûÀÎ ¸ñÇ¥ÀÔ´Ï´Ù. ±× Áß¿¡¼´Â ¹Ù·Î curvature°¡ ÁÖÃàÀÌ µÇ´Â °³³äÀÔ´Ï´Ù.
curvatureÀÇ °³³äÀº 4Â÷¿ø À̻󿡼´Â ´õ¿í º¹ÀâÇØÁö¹Ç·Î, Euclid 3Â÷¿ø °ø°£ E3¿¡¼ÀÇ curvature¸¦ ¸ÕÀú ³íÀÇÇÕ´Ï´Ù.
1. Curves ÍØàÊ <- Figure I-1 ÂüÁ¶
∘ 𝛂(t) = (x(t),y(t),z(t)) <- 𝛂: vector-valued fuction curve in 𝐄3, a ¡Â t ¡Â b, t: real variable parameter ØÚ˿ܨâ¦
∘ 𝛂'(t) = (x'(t),y'(t),z'(t)) = lim𝛥¡æ0 [𝛂(t + 𝛥t) - 𝛂(t))]/𝛥t <- 𝛂': derivative vector of curve 𝛂
∘ s(t) = ¡òat¡«𝛂'(u)¡«du <- s: arc length of curve 𝛂, t: time, ¡«𝛂'(u)¡«: instaneous speed áÜÕô, 𝛂': velocity vector
∘ 𝐋 = ¡òab¡«𝛂'(u)¡«du <- 𝐋: total length of the entire curve 𝛂(t), a ¡Â t ¡Â b, 𝐈: interval
∘ 𝛂"(t) = (x"(t),y"(t),z"(t)) <- 𝛂": derivative of velocity vector 𝛂', 𝛂": acceleration vector
∘ 𝐓(s) = 𝛂'(s) <- t = s ¡æ ds/dt = 1, 𝛂'(s) or 𝐓(s): unit tangent vector, 𝛂(s): unit speed curve
∘ 𝐓(s) ∙ 𝐓(s) = 1, ¡Å 𝐓(s) ∙ 𝐓'(s) = 0 (<- by product rule) ¡Å 𝐓(s)¡Ñ𝐓'(s), 𝛂"(s) or 𝐓'(s): curvature vector
∘ Definition I-1
k(s) = ¡«𝐓'(s)¡«= ¡«𝛂"(s)¡«
k(s)·Î ÁöĪµÇ´Â °î¼± 𝛂ÀÇ 𝛂(s)¿¡¼ÀÇ curvature ÍØáãÀº 𝐓'(s)ÀÇ ±æÀÌÀÌ´Ù.
∘ 𝐍(s) = 𝐓'(s)/¡«𝐓'(s)¡«= 𝐓'(s)/k(s). ¡Å 𝐓'(s) = k(s)𝐍(s) <- 𝐍(s): principal normal vector
∘ c(s) = 𝛂(s) + [1/k(s)]/𝐍(s) <- 𝛂(s): °î¼± 𝛂¿¡ÀÇ tangent point, c(s): center of curvature
osculating circle ïÈõºê: ¹ÝÁö¸§ 1/k(s), Á᫐ c(s)ÀÇ ¿ø, osculating plane: 𝐓(s)¿Í 𝐍(s)ÀÇ Æò¸é
∘ 𝐁 = 𝐓 X 𝐍 <- binormal vector of the unit length: osculating plane¿¡ ¼öÁ÷ÀÎ vector
𝐁' = (𝐓 X 𝐍)' = 𝐓' X 𝐍 + 𝐓 X 𝐍' = 0 + 𝐓 X 𝐍'= 𝐓 X 𝐍' (¡ñ 𝐓'= k𝐍)
𝐍 = 𝐁 X 𝐓, 𝐓 = 𝐍 X 𝐁, 𝐍¡Ñ𝐁, 𝐍¡Ñ𝐍', 𝐁'¡Ñ𝐁, 𝐁'¡Ñ𝐍' ¡Å 𝐁' ¡ð𝐍
∘ 𝐁' = - 𝜏𝐍 <- 𝜏 = 𝜏(s): torsion ºñƲ¸²(²¿ÀÓ) ÇÔ¼ö·Î¼ osculating planeÀÇ turning rate(üÞï® Ýïáã)¸¦ ÃøÁ¤ÇÔ.
∘ 𝐓' = k𝐍, 𝐍' = - k𝐓 + 𝜏𝐁, 𝐁' = - 𝜏𝐍 <- the Formulas of Frenet
¾ÆÁÖ °£·«ÇÏ°Ô ¿ä¾àÇÑ ÀÌ»óÀÇ °ü°è½ÄÀ» Á¦´ë·Î ÀÌÇØÇÑ´Ù¸é ¿ì¸®´Â 3Â÷¿ø¿¡¼ÀÇ ÀÓÀÇÀÇ °î¼±À» Çؼ®/ÀçÇöÇÒ ¼ö ÀÖ½À´Ï´Ù.
2. Gauss Curvature I <- Figure I-10 ÂüÁ¶
∘ ¸Å²ô·¯¿î(smooth) °î¸é(surface) 𝐌 ¡ø 𝐄3¿¡ ÀÓÀÇÀÇ Á¡ 𝐏¿¡ unit normal vector¸¦ 𝐔¶ó°í ÇÕ´Ï´Ù. À̶§ 𝐯°¡ Á¡ 𝐏¿¡¼
𝐌¿¡ Á¢ÇÏ´Â unit vector¶ó¸é, ±× 𝐯¿¡ ÀÇÁ¸ÇÏ´Â 𝛂𝐯 °î¼±ÀÌ ÀÖ´Â 𝐌°ú 𝐏¿¡¼ ±³Â÷ÇÏ´Â Æò¸éÀº 𝐯¿Í 𝐔¿¡ ÀÇÇØ °áÁ¤µË´Ï´Ù.
±×·¡¼ ¿ì¸®´Â 𝛂𝐯¸¦ °î¸é 𝐌ÀÇ Á¡ 𝐏¿¡¼ÀÇ normal section in the 𝐯 direction À̶ó°í ºÎ¸¨´Ï´Ù.
∘ 𝐤n(𝐯) = ∓1/ 𝐑(𝐯) <- 𝐑(𝐯): osculating circle ¹Ý°æ, 𝐤n(𝐯): 𝐌ÀÇ 𝐏¿¡¼ normal curvature in the 𝐯 direction
𝛂𝐯ÀÇ principal normal vector¿Í surface normal vectorÀÎ 𝐔ÀÇ ¹æÇâÀÌ µ¿ÀÏÇϸé +, ¹Ý´ëÀ̸é -, curvature°¡ 0À̸é 0.
∘ Gauss curvature 𝐊 (𝐌ÀÇ 𝐏¿¡¼)¶õ?
𝐊(𝐏) = 𝐤1 𝐤2 <- 𝐯1: tangent vector in a principal direction 𝐤1: maxinmum value of 𝐤n(𝐯),
𝐯2: tangent vector in a principal direction 𝐤2: minimum value of 𝐤n(𝐯), 𝐯1 and 𝐯1: Ç×»ó Á÷±³ÇÔ.
ex1) 𝐊 in a cylinder: (¹Ý°æ RÀÎ °æ¿ì) 𝐤1= 1/R, 𝐤2= 0 ¡Å 𝐊 = 0
ex2) 𝐊 in a sphere: (¹Ý°æ RÀÎ °æ¿ì) 𝐤n(𝐯) = ∓1/R2
ex3) 𝐊 in a sddle-shaped surface: z = 1/2(y2 - x2), 𝐊 < 0
ex4) 𝐊 in a torus: 𝐊 > 0 on outside surface, 𝐊 > 0 on inside surface, 𝐊 = 0 on two circle of top and bottom
CurvatureÀÇ intrinsic Ò®î¤îÜ Ç¥±â ´öºÐ¿¡ ÀϹݻó´ë¼º¿ø¸®ÀÇ 4Â÷¿ø ½Ã°ø°£ curvature¸¦ Á¤ÀÇÇÒ ¼ö ÀÖ½À´Ï´Ù.
GaussÀÇ Therema Egregium (»©¾î³ ïÒ×â)·Î ÀýÁ¤À» ÀÌ·ç´Â °î¸é ÀÌ·Ð ´öºÐ¿¡ intrinsic Ç¥±â°¡ °¡´ÉÇØÁ³½À´Ï´Ù.
intrinsicÇÑ curvatureÀÇ Àç°ø½ÄÈ´Â °íÂ÷¿øÀÇ manifold ÒýåÆô÷¿Í 'curved space'¸¦ ÀϹÝÈÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù.
3. Surfaces ÍØØü in E3 <- Figure I-20 ÂüÁ¶
∘ °î¸é 𝐌Àº 𝓡2ÀÇ open subset 𝐃¿¡ Á¤ÀÇµÈ µÎ°³ º¯¼öÀÇ vector ÇÔ¼ö 𝐗:𝐃 ¡æ E3ÀÇ image·Î locally(ÏÑá¶îÜÀ¸·Î) Ç¥±â °¡´É
𝐗 = 𝐗(u,v) = (x(u,v), y(u,v), z(u,v)) [3-2]
∘ ÆíÀÇ»ó ¿ì¸®´Â ÀÌ ÇÔ¼ö¸¦ 𝐃¿¡¼ ÃÖ¼Ò »ïÂ÷±îÁö ¹ÌºÐÇÒ ¼ö ÀÖÀ¸¸ç, 𝐗°¡ regular ïáöÎîÜÀÏ ¶§´Â ´ÙÀ½ÀÇ °æ¿ì
𝐗1(u, v) = ¡Ó𝐗/¡Óu = (¡Óx/¡Óu, ¡Óy/¡Óu, ¡Óz/¡Óu)
𝐗2(u, v) = ¡Ó𝐗/¡Óv = (¡Óx/¡Óv, ¡Óy/¡Óv, ¡Óz/¡Óv)
»ó±â µÎ vector´Â 𝐃ÀÇ °¢ (u,v)¿¡ ´ëÇØ linearlly independnt(àÊû¡ Լء)ÇÏ¿©¼, 𝐗1 X 𝐗2 ¡Á 0 in 𝐃.
∘ ÀϹÝÀûÀ¸·Î regularity(ïáöÎàõ)Àº 𝐃ÀÇ °¢ Á¡µéÀÌ neighborhood(ÐÎÛ¨) 𝛺¸¦ °®À¸¸ç, ÀÌ¿¡ ´ëÇØ ÇÔ¼ö 𝐗°¡
¿¬¼ÓÀûÀÎ inverse function(æ½ùÞâ¦) 𝐗(𝛺) ¡æ 𝛺 ¸¦ °®´Â one-to-one(ìéÓßìé)ÀÇ °ü°è¸¦ º¸ÀåÇÕ´Ï´Ù. ±×·¡¼
ÀÌ·¯ÇÑ ´ëÀÀÀ» system of curvillinear coordinate(ÍØàÊ ñ¨øöͧ) u, v on 𝐗(𝛺) ¡ø 𝐌À¸·Î »ý°¢ÇÒ ¼ö ÀÖ½À´Ï´Ù.
∘ 𝛂(t) = 𝐗 (u(t), v(t)) <- 𝐃¿¡¼ u(t), v(t)°¡ smooth °î¼±À̸é, 𝐗¿¡ ÀÇÇÑ imageµµ 𝐌¿¡¼ 𝛂µµ smooth °î¼±
𝛂'(t) = (¡Ó𝐗/¡Óu)(du/dt) + (¡Ó𝐗/¡Óv)(dv/dt) <- by chain rule
𝛂'(t) = u'𝐗1 + v'𝐗2 <- in abbriviated notation [3-3]
∘ Definition I-2
𝐌¿¡¼ 𝐏¸¦ Åë°úÇÏ´Â °î¼±ÀÇ velociy vector 𝐯°¡ 𝐏¿¡ ÀÖÀ¸¸é, vector 𝐯¸¦ 𝐏¿¡¼ 𝐌À¸·ÎÀÇ tangent vector ¶ó ºÎ¸¥´Ù.
𝐏¿¡¼ 𝐌À¸·ÎÀÇ ¸ðµç tangent vectorÀÇ ÁýÇÕÀº 𝐏¿¡¼ 𝐌ÀÇ tangent plane ¶ó°í ºÎ¸£°í, 𝐓p𝐌À¸·Î Ç¥±âÇÑ´Ù.
∘ 𝐏¿¡¼ÀÇ ¾î¶² tangent vector 𝐗(u0, v0)´Â 𝐗1(u0, v0)°ú 𝐗1(u0, vo)ÀÇ ÇÑ linear combinationÀÔ´Ï´Ù.
°Å²Ù·Î ½Ç¼ö a, b¿ÍÀÇ linear combination 𝐯 = (a𝐗1 + b𝐗2)(u0, v0)´Â 𝐌¿¡ ÀÖ´Â ÇÑ °î¼±ÀÇ velocity vectorÀÔ´Ï´Ù.
¿¹¸¦ µé¸é 𝛂(t) = 𝐗(u0+ at, v0+ bt)´Â 𝛂'(0) = 𝐯 ¸¦ °®½À´Ï´Ù. ±×·¡¼ regurality(ïáöÎàõ) of 𝐗¶õ 𝐓p𝐌°¡
𝐗1°ú 𝐗2¸¦ basis(±âÀú)·Î ÇÏ´Â °¢ Á¡ 𝐏¿¡¼ÀÇ 2-dimensional vector space¸¦ ÀǹÌÇÏ´Â °ÍÀÔ´Ï´Ù.
À̶§ 𝐗1(u0, v0)°ú 𝐗2(u0, v0)´Â ±×µé ÀÚ½ÅÀÌ ±× °î¼±ÀÇ velocity vectors
u¡æ 𝐗 (u, v0) (v = v0, fixed) <- u-parameter curve
v¡æ 𝐗 (u0, v) (u = u0, fixed) <- v-parameter curve
p.s. Richard L. Faber Differential Geometry and Relativity Theory (Marcel Deckker 1983) Chapter I.
¹ÌºÐ±âÇÏÇаú »ó´ë¼º ¿ø¸®¿¡ °ü½ÉÀ» µÐ ¿µ¾î±Ç ´ëÇб³ ¼öÇаú/¹°¸®Çаú °íÇгâ»ýµéÀ» ´ë»óÀ¸·Î ÁýÇʵǾú´Ù ÇÔ.
¿©·¯ GRÃ¥µéÀ» »ìÆì º¸´Ù°¡ ¼öÇÐÀû rigor¿Í ¹ÙÅÁÀÌ ÇÊ¿äÇÑ Á¦°Ô ¾ÆÁÖ ÀûÇÕÇÑ Ã¥À¸·Î »ý°¢µÇ¾î ¼±Á¤ÇÏ¿´À½.
* curvature´Â ¹®¸Æ¿¡ µû¶ó ÈÖ¾îÁü ÀÚü¸¦ ÀǹÌÇϰųª °î·üÀ» ÁöĪ |
|
|