±âº» ÆäÀÌÁö Æ÷Æ®Æú¸®¿À ´ëÇѹα¹ÀÇ ÀüÅë°ÇÃà Áß±¹°ú ÀϺ»ÀÇ ÀüÅë°ÇÃà ¼­À¯·´°ú ¹Ì±¹ÀÇ °ÇÃà ±¹¿ª û¿À°æ Çö´ë ¿ìÁÖ·Ð ´ëÇѹα¹ÀÇ »êdz°æ ¹éµÎ´ë°£ Á¾ÁÖ»êÇà ³×ÆÈ È÷¸»¶ó¾ß Æ®·¹Å· ¸ùºí¶û Áö¿ª Æ®·¹Å· ¿ä¼¼¹ÌƼ ij³â µî Ƽº£Æ® ½ÇÅ©·Îµå ¾ß»ý »ý¹° Æijë¶ó¸¶»çÁø °¶·¯¸® Ŭ·¡½Ä ·¹ÄÚµå °¶·¯¸® AT Æ÷·³ Æ®·¹Å· Á¤º¸ ¸µÅ©


 ·Î±×ÀÎ  È¸¿ø°¡ÀÔ

¹ÌºÐ±âÇÏÇÐ 3. Gauss °î·ü II; ÃøÁö¼± [u. 12/2019]
    ±è°ü¼®  2019-06-16 16:51:45, Á¶È¸¼ö : 1,118
- Download #1 : dff_1_3.jpg (47.8 KB), Download : 1



6. Gauss Curvature II <- Figure I-26 ÂüÁ¶

     ∘  Definition I-4
         𝐤1°ú 𝐤2°¡ °î¸é 𝐌ÀÇ ÇÑ Á¡ 𝐏ÀÇ normal curvature 𝐤n(𝐯)ÀÇ ÃÖ´ë°ª°ú ÃÖ¼Ò°ªÀ̶ó¸é, 𝐤1°ú  𝐤2¸¦ principal curvatures ¶ó
         Çϸç ÇØ´ç ¹æÇâÀ» principal directions À̶ó Çϸç, °öÀÎ 𝐊 = 𝐊(𝐏) = 𝐤1𝐤2´Â 𝐏¿¡¼­ÀÇ 𝐌ÀÇ Gauss curvature ¶ó ºÎ¸¥´Ù.

     ∘  Theorem I-5  
         𝐌ÀÇ ¾î¶² Á¡ 𝐏ÀÇ Gauss curvature : 𝐊(𝐏) = 𝐿/𝑔 ·Î ÁÖ¾îÁø´Ù. <- 𝐿 = det (𝐿𝑖𝑗), 𝑔 = det (𝑔𝑖𝑗)
         Proof. ¿ì¸®´Â 𝑔𝑖𝑗v𝑖v𝑗 = 1 ¶ó´Â Á¦ÇÑµÈ ½ÄÀ» extremize(пö·ûù)ÇÔÀ¸·Î½á Áõ¸íÀ» À¯µµÇÏ·Á°í ÇÕ´Ï´Ù.
          𝐤 = 𝐤n(𝐯) = 𝐿𝑖𝑗v𝑖v𝑗/𝑔𝑚𝑛v𝑚v𝑛  <- 𝐯: non-zero vectors of 𝐓𝑝𝐌; 𝐯 = v𝑖𝐗𝑖: principal direction vector, ¡Ó𝐤/¡Óv1 = ¡Ó𝐤/¡Óv2 = 0     
          Let f(x1, x2) = a𝑖𝑗x𝑖x𝑗  <- quadratic form, (a𝑖𝑗): real symmetric n X n matrix: a𝑖𝑗 = a𝑖𝑗, Then ¡Óf/¡Óx𝑟 = 2a𝑟𝑗x𝑗,  r = 1,2. ¡Å
         [d[f(x)/g(x)]/dx = [f'(x)g(x)- f(x)g'(x)]/g(x)2]¡æ  ¡Ó𝐤/¡Óv𝑟 = (2𝑔𝑚𝑛v𝑚v𝑛𝐿𝑟𝑗v𝑗 - 2𝐿𝑖𝑗v𝑖v𝑗𝑔𝑟𝑛v𝑛)/(𝑔𝑚𝑛v𝑚v𝑛)2, r = 1,2
         [ºÐÀÚÀÇ 𝐿𝑖𝑗v𝑖v𝑗↦ 𝐤𝑔𝑚𝑛v𝑚v𝑛, ºÐÀÚ ºÐ¸ð¸¦ Á¤¸®]¡æ  ¡Ó𝐤/¡Óv𝑟 = [2(𝐿𝑟𝑗 -  𝐤𝑔𝑟𝑗)v𝑗]/𝑔𝑚𝑛v𝑚v𝑛, r = 1,2
         At an extreme value we must have (𝐿𝑖𝑗 - 𝐤𝑔𝑖𝑗)v𝑗 = 0, 𝑖 = 1,2. then det(𝐿𝑖𝑗 - 𝐤𝑔𝑖𝑗) = 0.  <- v𝑗: non-zero vector; why?   [6-24]
         𝑔 = det (𝑔𝑖𝑗) = 𝑔11𝑔22 - (𝑔11)2,  𝐿 = 𝐿11𝐿22 - (𝐿11)2; 𝐤2, 𝐤, constant¿¡ ´ëÇØ (𝐤 - 𝐤1)(𝐤 - 𝐤2) = 0 ¹æ½ÄÀ¸·Î Àü°³ÇÕ´Ï´Ù.
         𝐤2𝑔 - 𝐤(𝑔11𝐿22 + 𝑔22𝐿11 - 2𝑔12𝐿12) + 𝐿 = 0  or 𝐤2 - 𝐤(𝑔11𝐿22 + 𝑔22𝐿11 - 2𝑔12𝐿12)/𝑔 + 𝐿/𝑔 = 0, ¡Å 𝐊(𝐏) = 𝐤1𝐤2 = 𝐿/𝑔  ▮ *

     ∘  Gauss curvatureÀÇ µÎ principal directionÀº ¼­·Î Á÷±³ÇÑ´Ù. 
         Proof. Á¡ 𝐏ÀÇ µÎ non-zero principal direction vector¸¦ °¢°¢ 𝐯 = v𝑖𝐗𝑖, 𝐰 = w𝑖𝐗𝑖 ¶ó°í ÇսôÙ.
         By Eq. (24), (𝐿𝑖𝑗 - 𝐤1𝑔𝑖𝑗)v𝑗 = 0, (𝐿𝑖𝑗 - 𝐤2𝑔𝑖𝑗)w𝑗 = 0,  𝑖 = 1,2; [𝑖 ⇄ 𝑗, 𝑔𝑖𝑗 = 𝑔𝑗𝑖] ¡æ 𝐿𝑖𝑗v𝑖 = 𝐤1𝑔𝑖𝑗v𝑖,  𝑖 = 1,2    [6-25]
         By Eq. (24) (25), (𝐤1 - 𝐤2)𝑔𝑖𝑗v𝑖w 𝑗 = 0. ¡Å𝑔𝑖𝑗v𝑖w 𝑗 = 𝐯 ∙ 𝐰 = 0. ¸¸ÀÏ 𝐤1 ¡Á 𝐤2 À̸é, µÎ principal directionsÀº ¼­·Î Á÷±³ÇÑ´Ù.  
         ¸¸ÀÏ 𝐤1 = 𝐤2 À̸é, ¿ì¸®´Â ¼­·Î Á÷±³ÇÏ´Â µÎ directionÀ» ¼±ÅÃÇؼ­ principal directionsÀ̶ó°í ºÎ¸¨´Ï´Ù. ▮
     ∘  Sphere mapping  or Gauss mapping
         𝐏 = 𝐗 (u10, u20) ±×¸®°í 𝛺: neighborhood of (u10, u20), 𝐗: one-to-one, continuous inverse 𝐗(𝛺)¡æ 𝛺 ¶ó°í °¡Á¤ÇÑ´Ù¸é,
         𝐗(𝛺)ÀÇ °¢ Á¡ 𝐗 (u1, u2)À¸·Î, E3ÀÇ ¿øÁ¡À¸·Î pararell-translated normal vector 𝐔 (u1, u2)¸¦ °ü·Ã½Ãų ¼ö ÀÖ½À´Ï´Ù.
        ¡«𝐔¡«= 1 À̹ǷÎ, ±× translated vector´Â unit sphere 𝐒2ÀÇ ÇÑÁ¡°ü ¿¬°ü½ÃÄÑ º¼ ¼ö Àִµ¥, ÀÌ·¯ÇÑ  𝐗(𝛺)¡æ 𝐒2 mappingÀ»
         Sphere mapping ¶Ç´Â Gauss mapping¶ó ºÎ¸£¸ç. 𝐔(𝛺)´Â 𝐗(𝛺)ÀÇ spherical normal image¶ó ºÎ¸£±âµµ ÇÕ´Ï´Ù.  
         𝐔´Â sphere¿¡ ¼öÁ÷ÇϹǷÎ, 𝐒2ÀÇ  𝐔(u1, u2)ÀÇ tangent plane 𝐓u𝐒2´Â 𝐗(u1, u2)ÀÇ tangent plane 𝐓x𝐌°ú ÆòÇàÇÕ´Ï´Ù.
         ¡Å 𝐔 = ∓ (𝐔1  ⨯ 𝐔2) /¡«𝐔1 ⨯ 𝐔2¡« or  𝐔 ∙ 𝐔1 ⨯ 𝐔2 = ∓¡«𝐔1 ⨯ 𝐔2¡«.
     ∘  Area 𝐔(𝛺) = ∓ ¡ó𝛺¡«𝐔1 ⨯ 𝐔2¡«du1du2 = ¡ó𝛺 𝐔 ∙ 𝐔1 ⨯ 𝐔2 du1du2,  𝐗(𝛺) = ∓ ¡ó𝛺¡«𝐗1 ⨯ 𝐗2¡«du1du2 = ¡ó𝛺 𝐔 ∙ 𝐗1 ⨯ 𝐗2 du1du2
         𝐊(𝐏) = lim𝛺 ¡æ (u01, u02) [Area 𝐔(𝛺)/Area 𝐗(𝛺)]   [6-26]
         Area 𝐔(𝛺) ≈ (𝐔 ∙ 𝐔1 ⨯ 𝐔2)(𝐏) A(𝛺), 𝐗(𝛺) ≈ (𝐔 ∙ 𝐗1 ⨯ 𝐗2)(𝐏) A(𝛺) ¡Å Area 𝐔(𝛺)/𝐗(𝛺) ≈ (𝐔 ∙ 𝐔1 ⨯ 𝐔2 / 𝐔 ∙ 𝐗1 ⨯ 𝐗2) (𝐏)
     ∘  Lemma (º¸Á¶ Á¤¸®) I-6
         𝐔1 ⨯ 𝐔2 = 𝐊 (𝐗1 ⨯ 𝐗2)
         Proof.  Define the functions 𝐿𝑖𝑗(u1, u2) 𝐿𝑖𝑗 ¡Õ 𝐿𝑗𝑘 𝑔𝑘𝑖,  𝑖,𝑗 =1,2   [6-27]
         𝐿𝑖𝑗 𝑔𝑖𝑚 = 𝐿𝑗𝑘 𝑔𝑘𝑖𝑔𝑖𝑚 = 𝐿𝑗𝑘 𝛿𝑘𝑚 = 𝐿𝑗𝑚;  𝐔 ∙ 𝐔 = 1, ¡Å 𝐔 ∙ 𝐔𝑗 = 0;  𝐔𝑗 = a𝑟𝑗 𝐗𝑟,  𝑗 =1,2  <- linear combination of 𝐗1 and 𝐗2
         𝐔 ∙ 𝐗𝑘 = 0 ¡æ 𝐔𝑗 ∙ 𝐗𝑘 + 𝐔 ∙ 𝐗𝑗𝑘 = 0  <- differentiated by u𝑗; ¡Å 𝐔𝑗 ∙ 𝐗𝑘 = - 𝐔 ∙ 𝐗𝑗𝑘 = -𝐿𝑗𝑘 = a𝑟𝑗 𝐗𝑟 ∙ 𝐗𝑘 = a𝑟𝑗 𝑔𝑟𝑘, 𝑗,𝑘 = 1,2
         <- by eq. 20; [¾çº¯¿¡ 𝑔𝑘𝑖¸¦ °öÇÏ°í sum over k]¡æ  - 𝑔𝑘𝑖𝐿𝑗𝑘 = a𝑟𝑗 𝑔𝑟𝑘𝑔𝑘𝑖 = a𝑟𝑗 𝛿𝑖𝑟 = a𝑖𝑗, ¡Å a𝑖𝑗 = - 𝐿𝑖𝑗  <- by eq. 27;
         ¡Å 𝐔𝑗 = - 𝐿𝑖𝑗 𝐗𝑖,  𝑗 =1,2  <- the equation of Weingarten   [6-28]
         𝐔1 ⨯ 𝐔2 = (- 𝐿𝑖1𝐗𝑖) ⨯ (- 𝐿𝑘2𝐗𝑘) = (𝐿11𝐗1 + 𝐿21𝐗2)  ⨯ (𝐿12𝐗1 + 𝐿22𝐗2) = (𝐿11𝐿22 -  𝐿21𝐿12) (𝐗1 ⨯ 𝐗2) = det (𝐿𝑖𝑗) (𝐗1 ⨯ 𝐗2)
          <- 𝐗𝑖 ⨯ 𝐗𝑖 = 𝟎, 𝐗𝑖 ⨯ 𝐗𝑗 = - 𝐗𝑗 ⨯ 𝐗𝑖; [det(𝐀𝐁) = det(𝐀)det(𝐁); det(𝐀-1) = 1/det(𝐀): det(𝐀) is non-zero, iff, 𝐀 is invertible.]
         det(𝐿𝑖𝑗) = det(𝐿𝑗𝑘𝑔𝑘𝑖) = det(𝐿𝑗𝑘)det(𝑔𝑘𝑖) = det(𝐿𝑗𝑘)/det(𝑔𝑘𝑖) = 𝐿/𝑔 = 𝐊. ▮

7. Geodesics ** <- Figure I-28 ÂüÁ¶

     ∘  ÀϹÝÀûÀ¸·Î °î¸é 𝐌 À§ °î¼± 𝛂Àº µÎ°¡Áö ÀÌÀ¯·Î curvature¸¦ °®½À´Ï´Ù. ù°´Â °î¸é ÀÚü°¡ 3Â÷¿øÀÇ °ø°£ ¼Ó¿¡¼­ ±ÁÀº °ÍÀ¸·Î
        º»ÁúÀûÀ¸·Î´Â ¾Õ¿¡¼­ ³íÀÇµÈ normal curvature ÀÔ´Ï´Ù. µÑ°´Â 𝐌ÀÌ °î¸éÀÌµç ¾Æ´Ïµç 𝛂°¡ 𝐌¿¡ ´ëÇØ »ó´ëÀûÀ¸·Î ±ÁÀº Á¤µµ·Î
        À̸¦ geodesic curvature ¶ó ºÎ¸£¸ç, ¾Æ·¡¿Í °°ÀÌ Á¤ÀÇÇÕ´Ï´Ù.
     ∘  𝛂(s) <- s: arc length; 𝛂' ∙ 𝛂' = 1, ¡Å 𝛂" ∙ 𝛂' = 0;  𝛂" = 𝛂"tan + 𝛂"nor = (u𝑟" + 𝛤𝑟𝑖𝑗 u𝑖'u𝑗')𝐗𝑟 + (𝐿𝑖𝑗 u𝑖'u𝑗')𝐔  <- by eq. (18)
        𝛂"tan ∙ 𝐔 = 0 and 𝛂"tan ∙ 𝛂' = (𝛂"tan + 𝛂"nor) ∙ 𝛂' = 𝛂" ∙ 𝛂' = 0 À̹ǷÎ, 𝛂"tan´Â ´ÙÀ½ ½ÄÀÇ the geodesic normal vector ÀÎ,  
        𝐰 = 𝐔 ⨯ 𝛂' (a vector tangent to 𝐌)¿Í ºñ·ÊÇϴµ¥. ±× propotionality factor¸¦  geodesic curvature ¶ó°í ºÎ¸¨´Ï´Ù.

     ∘  Definition I-7
        𝛂 = 𝛂(s)°¡ s°¡ È£ÀÇ ±æÀÌÀÎ 𝐌ÀÇ °î¼±ÀÏ ¶§, 𝛂(s)¿¡¼­ÀÇ geodesic curvature ´Â ´ÙÀ½ ¹æÁ¤½ÄÀÇ ÇÔ¼ö 𝐤g = 𝐤g(s)ÀÌ´Ù.       
        𝛂"tan = 𝐤g 𝐰 = 𝐤g 𝐔 ⨯ 𝛂'   [7-30]
        ¡Å 𝐤g = 𝐔 ∙ 𝛂' ⨯ 𝛂" <- geodesic curvature  𝐤g = 𝛂"tan∙ 𝐰 = 𝛂" ∙ 𝐰 = 𝛂" ∙ 𝐔 ⨯ 𝛂' <- »ïÁß ³»ÀûÀÇ ¼øȯ   [7-31]

     ∘  Definition I-8
        𝛂 = 𝛂(s)°¡ s°¡ È£ÀÇ ±æÀÌÀÎ 𝐌ÀÇ °î¼±ÀÏ ¶§, ¸¸ÀÏ 𝛂°¡ ¸ðµç(every) Á¡¿¡¼­ 𝛂"tan = 𝟬 (µ¿µîÇÏ°Ô 𝛂" = 𝛂"nor) À̶ó¸é
        𝛂¸¦ ÇϳªÀÇ geodesic À̶ó°í ºÎ¸¥´Ù.   
        ¡Å  𝛂"tan = u𝑟" + 𝛤𝑟𝑖𝑗 u𝑖'u𝑗' = 0,  𝑟 = 1,2,  𝐤g = 𝐔 ∙ 𝛂'⨯ 𝛂" = 0 <- a geodesic, if and onky if,  [7-32ab]

     ∘  Christoffel symbols of the second kind and the first kind
        Eq. (17) [𝐗𝑖𝑗 =  𝛤𝑟𝑖𝑗𝐗𝑟 + 𝐿𝑖𝑗𝐔,  𝑖,𝑗 = 1, 2]¿¡¼­ Á¤ÀÇµÈ 𝛤𝑟𝑖𝑗¸¦  Christoffel symbols of the second kind ¶ó°í ºÎ¸¨´Ï´Ù.
        ¶ÇÇÑ 𝛤𝑖𝑗𝑘 = 𝛤𝑟𝑖𝑗𝑔𝑟𝑘  𝑖,𝑗,𝑘 = 1,2 ·Î Á¤ÀÇÇÕ´Ï´Ù. <- 𝛤𝑖𝑗𝑘Christoffel symbols of the first kind   [7-33]
        𝐗𝑖𝑗 ∙ 𝐗𝑘 = 𝛤𝑟𝑖𝑗 𝐗𝑟 ∙ 𝐗𝑘 = 𝛤𝑟𝑖𝑗 𝑔𝑟𝑘 = 𝛤𝑖𝑗𝑘 -> ¡Ø 𝛤𝑟𝑖𝑗= 𝛤𝑟𝑗𝑖,  𝛤𝑖𝑗𝑘= 𝛤𝑗𝑖𝑘,  𝛤𝑚𝑖𝑗= 𝛤𝑖𝑗𝑘 𝑔𝑘𝑚  by eq. (17,12)   [7-34]
         ¡Ó𝑔𝑖𝑘/¡Óu𝑗 = (¡Ó /¡Óu𝑗)(𝐗𝑖 ∙ 𝐗𝑘) =  𝐗𝑖𝑗 ∙ 𝐗𝑘 + 𝐗𝑘𝑗 ∙ 𝐗𝑖 = 𝛤𝑖𝑗𝑘 +  𝛤𝑘𝑗𝑖
         ¡Ó𝑔𝑖𝑘/¡Óu𝑗 = 𝛤𝑖𝑗𝑘 +  𝛤𝑘𝑗𝑖,  ¡Ó𝑔𝑗𝑖/¡Óu𝑘 = 𝛤𝑗𝑘𝑖 +  𝛤𝑖𝑘𝑗,  ¡Ó𝑔𝑘𝑗/¡Óu𝑖 = 𝛤𝑘𝑖𝑗 +  𝛤𝑗𝑖𝑘   [7-35]
         ¡Å  𝛤𝑖𝑗𝑘 = 1/2 (¡Ó𝑔𝑖𝑘/¡Óu𝑗 +  ¡Ó𝑔𝑘𝑗/¡Óu𝑖 - ¡Ó𝑔𝑗𝑖/¡Óu𝑘) <- Christoffel symbols of the first kind  [7-36]
         ¡Å  𝛤𝑟𝑖𝑗 = (1/2) 𝑔𝑘𝑟 (¡Ó𝑔𝑖𝑘/¡Óu𝑗 +  ¡Ó𝑔𝑘𝑗/¡Óu𝑖 - ¡Ó𝑔𝑗𝑖/¡Óu𝑘) <- Christoffel symbols of the second kind  [7-37]

         Eq.(32a)(37)·Î extrinsicÇÑ Á¤ÀÇÀÇ Christoffel symbol°ú geodesicÀÇ intrinsic ÇعýÀÌ °¡´ÉÇÑ °ÍÀ» ¾Ë ¼ö ÀÖ½À´Ï´Ù!

    ∘  Christoffel symbols °è»ê <- 𝑔𝑖𝑗 = 𝐗𝑖 ∙ 𝐗𝑗, 𝑔 = det (𝑔𝑖𝑗) = 𝐸𝐺 - 𝐹2, 𝑔𝑖𝑗𝑔𝑗𝑘 =  𝛿𝑘𝑖, 𝑔11= 𝑔22/𝑔, 𝑔12= 𝑔21= -𝑔12/𝑔, 𝑔22= 𝑔11/𝑔
         Orthogonal coordinates òÁÎß ñ¨øöͧ: 𝐹 = 𝑔12= 𝑔21= 0, 𝑔12= 𝑔21= 0, 𝑔11= 𝐺/𝐸𝐺 = 1/𝐸 = 1/𝑔11, 𝑔22= 𝐸/𝐸𝐺 = 1/𝐺 = 1/𝑔22
             𝛤𝑟𝑖𝑗 = (1/2𝑔𝑟𝑟)(¡Ó𝑔𝑖𝑟/¡Óu𝑗 +  ¡Ó𝑔𝑟𝑗/¡Óu𝑖 - ¡Ó𝑔𝑗𝑖/¡Óu𝑟)  (no sum) <- replacing 𝑘 by 𝑟   [7-38]
            (Case 1) For 𝑗 = 𝑟: 𝛤𝑟𝑖𝑟 = (1/2𝑔𝑟𝑟) ¡Ó𝑔𝑟𝑟/¡Óu𝑖  (no sum)   [7-39a]
            (Case 2) For 𝑖 = 𝑗 ¡Á 𝑟:  𝛤𝑟𝑖𝑖 = (1/2𝑔𝑟𝑟)(- ¡Ó𝑔𝑖𝑖/¡Óu𝑟)  (no sum)  <- 𝑔𝑖𝑟= 𝑔𝑗𝑟= 0   [7-39b]
            (Case 3) (in dimension > 2) For 𝑖, 𝑗, 𝑟 all distinct:   𝛤𝑟𝑖𝑗 = 0   <-  𝑔𝑖𝑗= 𝑔𝑖𝑟= 𝑔𝑗𝑟= 0   [7-39c]
            (in dimension 2)  𝛤111= 𝐸u/2𝐸,  𝛤222= 𝐺v/2𝐺,  𝛤112= 𝛤121= 𝐸v/2𝐸,  𝛤212= 𝛤221= 𝐺u/2𝐺,  𝛤122= -𝐺u/2𝐸<,  𝛤211= -𝐸v/2𝐺   [7-40]
     ∘   Example 17. Cartesian ÁÂÇ¥°èÀÇ Æò¸é
          ds2 = du2 +  dv2, 𝐸 = 𝐺 = 1, u"= v"= 0; u = as + b, v = cs + d, ¡Å geodesics: straight lines(òÁàÊ)  ▮
     ∘   Example 18. Geographic(ò¢×â) ÁÂÇ¥°èÀÇ ±¸
          𝐗(u, v) = (R cos u cos v, R cos u sin v, R sin v), 𝐸 = R2cos v2, 𝐹 = 0 , 𝐺 = R2,  
          𝐗1 = (-R sin u cos v, R sin u sin v, 0), 𝐗2 = (-R cos u sin v, R cos u cos v, R cos v),           
          ds2 = R2cos2v du2 + R2dv2,  𝛤112= 𝛤121= 𝐸v/2𝐸 = -tan v, 𝛤211= -𝐸v/2𝐺 = sin v cos v, 
          (Geographic ÁÂÇ¥°è ±¸ÀÇ geodesicsÀÌ great circles(ÓÞê­)À̶ó´Â Áõ¸íÀº ³ªÁß¿¡ ³ª¿É´Ï´Ù.  <- Ex. 12, 14 ÂüÁ¶)
     ∘   Example 19. Polar(п) ÁÂÇ¥°èÀÇ Æò¸é
          𝐗(r, 𝜃) = (rcos𝜃, rsin𝜃, 0), 𝐗1 = (cos𝜃, sin𝜃, 0), 𝐗2 = (-rsin𝜃, rcos𝜃, 0), 𝐸 = 1, 𝐹 = 0, 𝐺 = r2;  (u, v)¡æ (r, 𝜃) in Eq. (40)
          ds2 = dr2 +  r2d𝜃2,  𝛤212= 𝛤221= 1/r,  𝛤122= -r;  applying Eq. (32a) [ur" + 𝛤𝑟𝑖𝑗u𝑖'u𝑗' = 0, r=1,2  u1= r, u2= 𝜃]¡æ
          d2r/ds2 - r (d𝜃/ds)2 = 0,  d2𝜃/ds2 + 2/r (dr/ds)(d𝜃/ds) = 0   [7-41ab]
          If we divide Eq. (41b) by 𝜃'= d𝜃/ds, then 1/𝜃'(d𝜃'/ds) + 2/r(dr/ds) = 0, [integrated to s]¡æ ln ∣𝜃'∣ + ln r2 = c.
          [expoentiationg]¡æ  ∣r2𝜃'∣ = ec or r2 d𝜃/ds = h  h: non-zero constant   [7-42]                                       
          [deviding Eq.(6) by ds2] ¡æ  1 = (dr/ds)2 + r2(d𝜃/ds)2 = (dr/ds)2 + h2/r2   [7-43]
          dr/ds =  ∓ 1/r(r2 - h2)1/2, [by eq. (40)]¡æ d𝜃/dr =  ∓ h/[r(r2-h2)1/2] = ∓ d(cos-1 h/r)/dr  
          h/r = cos(𝜃 - 𝜃0)  <-  h: ¿øÁ¡¿¡¼­ Á÷¼±±îÁö ¼öÁ÷°Å¸®, 𝜃0: 𝜃 = 0 ¿¡¼­ ¿øÁ¡¿¡¼­ Á÷¼±±îÁöÀÇ ¼öÁ÷ ±³Â÷Á¡±îÁöÀÇ °¢  [7-44]            
         ±×·¯¹Ç·Î ÀÌ geodesicÀº Á¡ 𝐏(r, 𝜃)¿Í 𝐀(h, 𝜃0)¸¦ ¿¬°áÇÏ´Â Á÷¼± 𝐏𝐀¡êÀÇ ¹æÁ¤½ÄÀÔ´Ï´Ù. <- ¡Ð𝐏𝐎𝐀 = 𝜃 - 𝜃0

    ∘  Theorem I-9
        𝛂 = 𝛂(s)°¡, a¡Âs¡Âb, 𝐌 À§ÀÇ s°¡ È£ÀÇ ±æÀÌÀÎ °î¼±ÀÏ ¶§, ¸¸ÀÏ 𝛂°¡ µÎ ³¡Á¡À» ¿¬°áÇÏ´Â °î¸é 𝐌 À§ÀÇ °¡Àå ªÀº °î¼±À̶ó¸é,
        𝛂´Â ÇÑ geodesicÀÌ´Ù.    
         Proof.  𝛂(s) =  𝐗(u1(s), u2(s)), length of 𝛂𝜖(s) ≧ length of 𝛂(s),
         U𝑖(s, 𝜖) = u𝑖(s) + 𝜖v𝑖(s) for 𝑖=1,2, a¡Âs¡Âb, v𝑖: smooth function v𝑖(a)= v𝑖(b)= 0, 𝑖=1,2, ÀÓÀÇÀÇ (U1, U2) in the domain of 𝐗
         For each 𝜖, 𝛂𝜖(s) = 𝐗(U1(s, 𝜖), U1(s, 𝜖)) is a slight variation. [Figure I-28];  ÀÌÁ¦ L(𝜖)¸¦ 𝛂𝜖ÀÇ ±æÀ̶ó°í ÇսôÙ.
         L(𝜖) = ¡òab𝜆(s, 𝜖)ds, <- 𝜆(s, 𝜖) = [𝑔𝑖𝑗(U1,U2) ¡ÓU𝑖/¡Ós, ¡ÓU𝑗/¡Ós]1/2; the minimality of L(0) ¡æ L'(0) = ¡òab ¡Ó𝜆(s,0)/¡Ó𝜖 ds = 0
         ¡Ó𝜆(s,𝜖)/¡Ó𝜖 = 1/2𝜆[(¡Ó𝑔𝑖𝑗)/¡Ó𝜖)(¡ÓU𝑖/¡Ós)(¡ÓU𝑗/¡Ós) + 2𝑔𝑖𝑗(¡ÓU𝑖/¡Ós)(¡Ó2U𝑗/¡Ós¡Ó𝜖)] <- 𝜆=¡î F, 𝜆'=(1/2𝜆)F'; 𝑔𝑖𝑗= 𝑔𝑗𝑖
         L'(0) = (1/2)¡òab (¡Ó𝑔𝑖𝑗/¡ÓU𝑘)v𝑘U𝑖'U𝑗' + 2𝑔𝑖𝑘U𝑖'v𝑘') ds = 0  <- 𝜖 = 0, 𝛂0(s) = 𝛂(s), 𝜆(s, 0) = 1; ¡ÓU𝑗/¡Ó𝜖 = v𝑗
         °ýÈ£¾È µÑ°Ç×ÀÇ ÀûºÐ: [¡ò udv = uv- ¡ò vdu],  u: 2𝑔𝑖𝑘U𝑖',  dv: v𝑘'ds,  du: ¡Ó/¡Ós[2𝑔𝑖𝑘U𝑖']ds,  v = ¡ò dv = ¡ò v𝑘'ds = v𝑘,
         uv = 2𝑔𝑖𝑘U𝑖'v𝑘ba = 0  (¡ñ v𝑘(a) = v𝑘(b) = 0),  ¡Å [¡ò udv = - ¡ò vdu = - 2¡Ó(𝑔𝑖𝑘U𝑖'v𝑘)/¡Ós ds
         L'(0) = (1/2)¡òab[(¡Ó𝑔𝑖𝑗/¡ÓU𝑘)U𝑖'U𝑗' - 2¡Ó(𝑔𝑖𝑘U𝑖')/¡Ós] v𝑘 ds = 0  
         ¡Å 1/2(¡Ó𝑔𝑖𝑗/¡ÓU𝑘)U𝑖'U𝑗' - ¡Ó(𝑔𝑖𝑘U𝑖')/¡Ós = 0,  𝑘 = 1,2  ¡æ ÀÌÇÏ´Â À̷κÎÅÍ Eq. (32a)¸¦ Ãß·ÐÇÕ´Ï´Ù.
         0 =  1/2(¡Ó𝑔𝑖𝑗/¡ÓU𝑘)U𝑖'U𝑗' - (¡Ó𝑔𝑖𝑘/¡ÓU𝑗)U𝑖''U𝑗'- 𝑔𝑚𝑘u𝑚" = [1/2(𝛤𝑖𝑘𝑗 + 𝛤𝑗𝑘𝑖) - (𝛤𝑘𝑗𝑖 + 𝛤𝑖𝑗𝑘)]U𝑖'U𝑗' - 𝑔𝑚𝑘u𝑚"  
         [𝛤𝑖𝑘𝑗U𝑖'U𝑗' =  𝛤𝑗𝑘𝑖U𝑖'U𝑗'] (dummi index ±³È¯);  𝛤𝑗𝑘𝑖 = 𝛤𝑘𝑗𝑖; ¡Å 𝑔𝑚𝑘u𝑚" + 𝛤𝑖𝑗𝑘U𝑖'U𝑗' = 0; ¾çº¯¿¡ 𝑔𝑘r °öÇÏ°í k¿¡ ´ëÇØ ÇÕ»êÀ» Çϸé,
         𝑔𝑚𝑘𝑔𝑘ru𝑚" + 𝛤𝑖𝑗𝑘𝑔𝑘rU𝑖'U𝑗' = 0,  𝜎𝑚ru𝑚" +  𝛤 r 𝑖𝑗U𝑖'U𝑗' = 0, ur" + 𝛤 r 𝑖𝑗U𝑖'U𝑗' = 0, r = 1,2;  ¡Å 𝛂´Â ÇϳªÀÇ geodesicÀÔ´Ï´Ù. ▮

    ∘  Theorem I-10
        𝐌ÀÇ Á¡ 𝐏¿Í ±× °÷ÀÇ unit tangent vector 𝐯°¡ ÁÖ¾îÁö¸é, 𝛂(0) = 𝐏 ±×¸®°í 𝛂'(0) = 𝐯ÀÎ À¯ÀÏÇÑ geodesic 𝛂(s)°¡ Á¸ÀçÇÑ´Ù.
         Proof. 𝐏 = 𝐗(u01, u01), 𝐯 = v𝑖𝐗𝑖(u01, u01) À̶ó°í Çϸé geodesicÀÇ Á¤ÀÇ Eq. (32a)¿¡ µû¶ó À¯ÀÏÇÑ function ur(s)´Â,
         u𝑟" + 𝛤𝑟𝑖𝑗 u𝑖'u𝑗' = 0,  ur = ur0,  ur'(0) = v'  for r = 1,2  <- 𝛂(s) =  𝐗(u1(s), u2(s)), s: arc length
         f(s) = ¡«𝛂'(s)¡«2 = 𝑔𝑖𝑗 u𝑖'u𝑗' = constant C  <- ds2 by eq. (6), the first fundamental form; f(0): unit length
         f'(s) = (¡Ó𝑔𝑖𝑗/¡Óu𝑘)u𝑖'u𝑗'u𝑘' + 𝑔𝑖𝑗 u𝑖"u𝑗' + 𝑔𝑖𝑗 u𝑖'u𝑗" = (𝑔𝑗𝑟𝛤𝑟𝑖𝑘 + 𝑔𝑖𝑟𝛤𝑟𝑗𝑘)u𝑖'u𝑗'u𝑘' + 𝑔𝑖𝑗 u𝑖"u𝑗' + 𝑔𝑖𝑗 u𝑖'u𝑗"
                 = 𝑔𝑖𝑟u𝑖'(u𝑟" + 𝛤𝑟𝑗𝑘 u𝑗'u𝑘') + 𝑔𝑟𝑗u𝑗'(u𝑟" + 𝛤𝑟𝑖𝑘 u𝑖'u𝑘') = 0, and so f(s) ¡Õ 1.  <- unit tangent vector
         Áï, Geodesic ÇÊ¿äÃæºÐÁ¶°Ç½Ä Eq. (32a)À» Àû¿ëÇϸé metric formÀÌ ¼º¸³ÇÏ°í, ±× ¿ªµµ ¼º¸³ÇϹǷΠÁõ¸íÀÌ ¿Ï·áµË´Ï´Ù. ▮            

     ∘   Exercise I-7-12.  Sppose 𝐌 has metric form ds2 = 𝐸 du2 + 𝐺 dv2 with 𝐸v = 𝐺v = 0.
         (a) Verify that the only non-zero Christoffel symbol 𝛤𝑟𝑖𝑗 are 𝛤111 = 𝐸u /2𝐸, 𝛤212 = 𝛤221 = 𝐺u /2𝐺, 𝛤122 = - 𝐺u /2𝐸. Solution. Eq. (40)
         (b) Show that a geodesic on 𝐌 satisfies  v" + 𝐺u /𝐺 u' v' = 0 and intergrate this equation to obtain 𝐺v' = h (a non-zero constant)
              Solution. u𝑟" + 𝛤𝑟𝑖𝑗 u𝑖'u𝑗' = 0, 𝑟 = 1,2, Hence v " + 2𝛤212u'v' = 0. ¡Å v" + 𝐺u /𝐺 u'v' = 0.  Again, d(𝐺v')/𝐺ds = v" + (𝐺u /𝐺)u'v' = 0.
              Therefore d(𝐺v')/ds = 0, and 𝐺v' = h, h = non-zero constant.
         (c) Refering to Example 19, combine 𝐺v' = h with 𝐸 (u')2 + 𝐺 (v')2 = 1 to obtain dv/du = ∓ h¡î 𝐸 /{¡î 𝐺 ¡î (𝐺 - h2)}.  [7-45]
              Solution. dv/dh = h/𝐺. 1 = 𝐸(du/ds)2 + 𝐺(du/ds)2=  𝐸(du/ds)2 + 𝐺(h/𝐺)2= 𝐸(du/ds)2 + h2/𝐺. Hence du/ds = ∓ ¡î {(1 - h2/𝐺)/𝐸},
              dv/du = ∓ h/𝐺 ¡î {E/(1 - h2/𝐺)} = ∓ h¡î 𝐸 /{¡î 𝐺 ¡î (𝐺 - h2)}. ▮
     ∘   Exercise I-7-14.  If 𝐌 has metric ds2 = 𝐸 du2 + 𝐺 dv2 with 𝐸u = 𝐺u = 0. a geodesic on 𝐌 satisfies  du/dv = ∓ h¡î 𝐺  /¡î 𝐸 ¡î (𝐸 - h2).
              (A proof is immediately obtained if in Exercise 12 we Intechange u with v, 𝐸  with 𝐺, and 1 with 2.)
         (a) Show that a geodesic on the sphere satisfies  du/dv = h sec2v /¡î (R2 - h2 sec2v) =  h sec2v /¡î (R2 - h2 - h2 tan2v). h: const.
              Solution. du/dv = ∓ h¡î 𝐺  /{¡î 𝐸 ¡î (𝐸 - h2)}  𝐸u' = h,  𝐸 = R2 cos2 v, 𝐺 = R2,
              du/dv = ∓ h¡î 𝐺  /¡î 𝐸 ¡î (𝐸 - h2) = hR / (R cos v ¡î (R2 cos v - h2) = h sec2v /¡î (R2 - h2 sec2v) =  h sec2v /¡î (R2 - h2 - h2 tan2v).
         (b) By means of the substitution w = h tan v, intergrate the above equation to obtain  cos(u - u0) + 𝛾 tan v = 0,  u0), 𝛾 = constants. [46]
              [Use ¡ò (a2 - x2)-1/2 dx = - cos-1 (x/a) + c.]
              Solution. dw = h sec2 v dv,  u = ¡ò {h sec2 v / ¡î (r2 - h2 - h2 tan2} dv = - ¡ò {-1/¡î R2 - h2 - w2)} dw = - cos-1(w /¡î {R2 - h2)} + u0.
              Therefore cos (u - u0) = w /¡î {R2 - h2) = h tan v /¡î {R2 - h2). Let  𝛾 = -h /¡î {R2 - h2)  be. Then we have  cos (u - u0) + 𝛾 tan v = 0.
         (c) Show that Eq. (46), when reexpressed in terms of Cartesian coordinates,   x = R cos u cos v,    y = R sin u cos v,   z = R sin v 
               is a linear equation of the form 𝛼x + 𝛽y + 𝛾z = 0, and so represednts a plane pf the sphere through the orgin, i.e., a great circle.
              Solution. By multiplying R cos v, R cos v cos (u - u0) + 𝛾 cos v tan v = 0, R cos v (cos u cos u0 + sin u sin u0) + 𝛾 sin v = 0.
               Hence if 𝛼 = cos u0, 𝛽 = sin u0, then we have  𝛼x + 𝛽y + 𝛾z = 0. (ÀÌ´Â 𝐧 (𝛼, 𝛽, 𝛾)°ú Á÷±³Çϸ鼭 ¿øÁ¡À» Áö³ª´Â Æò¸é 𝐏 (z,y,z)ÀÔ´Ï´Ù.
               Áï, 𝐧 ∙ 𝐏 = 0. µû¶ó¼­ Áö¸®Àû(geographical) ÁÂÇ¥°èÀÇ geodesicÀº ´ë¿ø(great circle)ÀÇ ÀϺÎÀÔ´Ï´Ù.)  ▮
             
p.s.  determinant´Â ¼±Çüµ¶¸³ ¿©ºÎ, ¿ªÇà·Ä Á¸Àç ¿©ºÎ, »ïÁß³»ÀûÀÇ ºÎÇÇ ¹× Gauss curvature »êÁ¤ÀÇ '°áÁ¤ÀÚ'-google-ÀÓ. ('Çà·Ä½Ä'Àº ºñÃßõ)
       * ▮ 'the proof is complete ' Áõ¸íÀÌ ¿Ï·áµÊÀ» ³ªÅ¸³»´Â ±âÈ£
       ** geodesic: ´ëÇѼöÇÐȸÀÇ ÃøÁö¼±(ö´ò¢àÊ), ¹°¸®ÇÐȸÀÇ Áö¸§±æÀε¥, ¿©±â¼­´Â ÃøÁö¼±/¿µ¾î·Î Ç¥±â


±è°ü¼®
º¹½ÀÀ» Çϸ鼭 ºñ±³Àû Áß¿äÇÏ´Ù°í »ý°¢µÇ´Â Exercise I-7-12¿Í I-7-14¸¦ Ç®¾î¼­ ±× SolutionÀ» Ãß°¡Çß½À´Ï´Ù. 2019-12-26
01:14:22

 


Name
Spamfree

     ¿©±â¸¦ Ŭ¸¯ÇØ ÁÖ¼¼¿ä.

Password
Comment

  ´ä±Û¾²±â   ¸ñ·Ïº¸±â
¹øÈ£ Á¦               ¸ñ À̸§ ¿¬°ü ³¯Â¥ Á¶È¸
115        Mathematics of Astronomy  4. Black holes & cosmology    ±è°ü¼® 4 2023-05-02
08:31:40
1439
114   StillÀÇ <ºí·ÏÀ¸·Î ¼³¸íÇÏ´Â ÀÔÀÚ¹°¸®ÇÐ>      ±è°ü¼® 3 2022-04-14
18:49:01
962
113    BeckerÀÇ <½ÇÀç¶õ ¹«¾ùÀΰ¡?>    ±è°ü¼® 3 2022-04-14
18:49:01
962
112      PenroseÀÇ <½Ã°£ÀÇ ¼øȯ> (°­Ãß!) [u. 5/2023]  🌹    ±è°ü¼® 3 2022-04-14
18:49:01
962
111  ÀϹݻó´ë¼º(GR) ÇнÀ¿¡ ´ëÇÏ¿©..    ±è°ü¼® 1 2022-01-03
09:49:28
341
110  HTML(+) ¸®ºä/ȨÆäÀÌÁö ¿î¿ë^^  [1]  ±è°ü¼® 1 2021-11-08
16:52:09
236
109  PeeblesÀÇ Cosmology's Century (2020)    ±è°ü¼® 1 2021-08-16
21:08:03
426
108  <ÇѱÇÀ¸·Î ÃæºÐÇÑ ¿ìÁÖ·Ð> ¿Ü  ✅    ±è°ü¼® 5 2021-06-06
13:38:14
2204
107    RovelliÀÇ <º¸ÀÌ´Â ¼¼»óÀº ½ÇÀç°¡ ¾Æ´Ï´Ù>    ±è°ü¼® 5 2021-06-06
13:38:14
2204
106      SmolinÀÇ <¾çÀÚ Áß·ÂÀÇ ¼¼°¡Áö ±æ>    ±è°ü¼® 5 2021-06-06
13:38:14
2204
105        SusskindÀÇ <¿ìÁÖÀÇ Ç³°æ> (°­Ãß!)  🌹    ±è°ü¼® 5 2021-06-06
13:38:14
2204
104          ´ëÁßÀû ¿ìÁÖ·Ð Ãßõ¼­ ¸ñ·Ï [u. 9/2021]  [1]  ±è°ü¼® 5 2021-06-06
13:38:14
2204
103  Zel'dovich's Relativistic Astrophysics  ✅    ±è°ü¼® 1 2021-04-01
08:16:42
1316
102  Dirac Equation and Antimatter    ±è°ü¼® 1 2021-03-15
12:49:45
585
101  11/30 žç ÈæÁ¡ sunspots  ✅    ±è°ü¼® 2 2020-11-30
16:14:27
1005
100    Coronado PST ÅÂ¾ç »çÁø^^    ±è°ü¼® 2 2020-11-30
16:14:27
1005
99  Linde's Inflationary Cosmology [u. 1/2021]    ±è°ü¼® 1 2020-11-06
09:19:06
903
98  The Schrödinger Equation (7) Harmonic Oscillator  ✅  [1]  ±è°ü¼® 1 2020-09-17
21:43:31
2713
97  Çö´ë ¿ìÁÖ·ÐÀÇ ¸íÀú WeinbergÀÇ <ÃÖÃÊÀÇ 3ºÐ>  ✅    ±è°ü¼® 3 2020-08-09
11:37:44
1411
96    ¹°¸®Çеµ¸¦ À§ÇÑ Çö´ë ¿ìÁַм­´Â?    ±è°ü¼® 3 2020-08-09
11:37:44
1411
95      Çö´ë ¿ìÁÖ·ÐÀÇ ÃÖ°í, ÃÖ½Å, °íÀü¼­.. [u. 10/2024]   [1]  ±è°ü¼® 3 2020-08-09
11:37:44
1411
94   Mathematical Cosmology 1. Overview  🔵    ±è°ü¼® 6 2020-06-07
16:23:00
5641
93    Mathematical Cosmology 2. FRW geometry     ±è°ü¼® 6 2020-06-07
16:23:00
5641
92      Mathematical Cosmology 3. Cosmological models I    ±è°ü¼® 6 2020-06-07
16:23:00
5641
91        Mathematical Cosmology 4. Cosmological models II    ±è°ü¼® 6 2020-06-07
16:23:00
5641
90          Mathematical Cosmology 5. Inflationary cosmology  [1]  ±è°ü¼® 6 2020-06-07
16:23:00
5641
89            Mathematical Cosmology 6. Perturbations    ±è°ü¼® 6 2020-06-07
16:23:00
5641
88  Hobson Efstathiou Lasenby GR 11a. Schwartzschild ºí·¢È¦  🔴  [2]  ±è°ü¼® 3 2020-05-13
13:44:21
17674
87    Hobson et al. GR 11b. Áß·ÂÀÇ ºØ±«, ºí·¢È¦ Çü¼º    ±è°ü¼® 3 2020-05-13
13:44:21
17674
86      Hobson et al. GR 11c. ¿úȦ, Hawking È¿°ú    ±è°ü¼® 3 2020-05-13
13:44:21
17674
85  Hobson Efstathiou Lasenby GR 19. ÀϹݻó´ë¼ºÀÇ º¯ºÐÀû Á¢±Ù    ±è°ü¼® 1 2020-04-16
07:13:39
548
84  Dirac's GR 35. ¿ìÁÖÇ× [u. 3/2020]   🔵  [2]  ±è°ü¼® 1 2020-01-22
08:59:01
3648
83  1/20 ±º¾÷¸®ÀÇ Orion ¼º¿î^^    ±è°ü¼® 1 2020-01-20
23:28:21
450
82  º¤ÅÍ¿Í ÅÙ¼­ 6. ÅÙ¼­ ÀÀ¿ë [u. 1/2020]    ±è°ü¼® 1 2020-01-01
19:32:21
542
81  2019³â ³ëº§¹°¸®Çлó - PeeblesÀÇ ¹°¸®Àû ¿ìÁַР  ✅    ±è°ü¼® 1 2019-10-14
19:30:49
1212
80  ÀϹݻó´ë¼º(GR) 1. µî°¡¿ø¸®; Á߷°ú °î·ü   🔵    ±è°ü¼® 5 2019-09-06
09:38:00
4890

    ¸ñ·Ïº¸±â   ÀÌÀüÆäÀÌÁö   ´ÙÀ½ÆäÀÌÁö     ±Û¾²±â [1] 2 [3][4][5]
    

Copyright 1999-2024 Zeroboard / skin by zero & Artech