±è°ü¼®
|
2019-06-16 16:55:58, Á¶È¸¼ö : 1,330 |
- Download #1 : dff_1_4.jpg (54.1 KB), Download : 2
8. Curvature Tensor And The Theorema Egregium(»©¾î³ ïÒ×â)
∘ The Gauss Formulars: 𝐗𝑖k = 𝛤h𝑖k 𝐗h + 𝐿𝑖k 𝐔, 𝑖k = 1,2 <- Eq.(17) [8-47]
∘ The Weingarten Formulars: 𝐔𝑗 = - 𝐿𝑗𝑖 𝐗𝑗, 𝑖 = 1,2; 𝐿𝑗𝑖 = 𝐿𝑖𝑘𝑔𝑘𝑗, 𝑖 = 1,2 <- Eq. (28) [8-48]
∘ Theorem I-11 (Theorema Egregium ) »©¾î³ ïÒ×â
ÇÑ °î¸éÀÇ the Gauss cuvature´Â the metric form, ±×¸®°í ±× ù¹ø°¿Í µÎ¹ø° derivatives(ÓôùÞâ¦)ÀÇ °è¼öµéÀÇ ÇÔ¼öÀÌ´Ù.
±×·¯¹Ç·Î intrinsicÇÏ´Ù(Ò®î¤îÜÀÌ´Ù).
Proof. 𝐗𝑖k𝑗 = ¡Ó𝛤h𝑖k/¡Óu𝑗 𝐗h + 𝛤h𝑖k 𝐗h𝑗 + ¡Ó𝐿𝑖k/¡Óu𝑗 𝐔 + 𝐿𝑖k 𝐔𝑗 <- Eq. (47)ÀÇ ¾çº¯À» u𝑗¿¡ ´ëÇØ ¹ÌºÐÇÏ°í ¡Ó𝐗𝑖k/¡Óu𝑗¸¦ 𝐗𝑖k 𝑗¶ó Ç¥±âÇÔ
𝐗𝑖k𝑗 = (¡Ó𝛤h𝑖k/¡Óu𝑗 + 𝛤r𝑖k𝛤hr𝑗 - 𝐿𝑖k𝐿h𝑗)𝐗h + (𝛤r𝑖k𝐿r𝑗 + ¡Ó𝐿𝑖k/¡Óu𝑗) 𝐔 <- 𝐔𝑗 = - 𝐿h𝑗 𝐗h, 𝛤h𝑖k 𝐗h𝑗¡æ 𝛤r𝑖k 𝐗r𝑗(index Á¶Á¤) [8-49]
𝐗𝑖𝑗k = (¡Ó𝛤h𝑖𝑗/¡Óuk + 𝛤r𝑖𝑗𝛤hrk - 𝐿𝑖𝑗𝐿hk)𝐗h + (𝛤r𝑖𝑗𝐿rk + ¡Ó𝐿𝑖𝑗/¡Óuk) 𝐔 <- switching 𝑗 and k [8-50]
¡Ó𝛤h𝑖k/¡Óu𝑗 - ¡Ó𝛤h𝑖𝑗/¡Óuk + 𝛤r𝑖k𝛤hr𝑗 - 𝛤r𝑖𝑗𝛤hrk = 𝐿𝑖k𝐿h𝑗 - 𝐿𝑖𝑗𝐿hk <- 𝐗𝑖k𝑗 = 𝐗𝑖𝑗k ¡ñ ø¶Ú°ÝÂÀÇ ¼ø¼´Â ¹«°üÇÔ [8-51]
𝑅h𝑖𝑗k = ¡Ó𝛤h𝑖k/¡Óu𝑗 - ¡Ó𝛤h𝑖𝑗/¡Óuk + 𝛤r𝑖k𝛤hr𝑗 - 𝛤r𝑖𝑗𝛤hrk, h,𝑖,𝑗,k = 1,2 <- Christoffel ±âÈ£´Â 𝑔𝑖𝑗°ü·Ã ÇÔ¼öÀ̹ǷΠintrinsic! [8-52]
𝑅h𝑖𝑗k = -𝑅h𝑖k𝑗 <- Riemann-Christoffel curvature tensor * [8-53]
𝑅h𝑖𝑗k = 𝐿𝑖k𝐿h𝑗 - 𝐿𝑖𝑗𝐿hk <- Riemann-Christoffel curvature tensor on the second fundamental form [8-54]
𝑅m𝑖𝑗k ¡Õ 𝑔mh 𝑅h𝑖𝑗k <- by Eq. (52) intrinsic!; 𝑅r𝑖𝑗k ¡Õ 𝑔mr 𝑅mm𝑖𝑗k [inverse relation by Eq. (12)] [8-55]
𝑅m𝑖𝑗k = 𝐿𝑖k𝐿𝑗m - 𝐿𝑖𝑗𝐿km <- Eq. (54) ¾çº¯¿¡ 𝑔mh °öÇÏ°í Eq. (27) [𝐿𝑖𝑗 ¡Õ 𝐿𝑗𝑘 𝑔𝑘𝑖, 𝑖,𝑗 =1,2]¿¡ µû¶ó Á¤¸®ÇÔ [8-56]
𝐊 = 𝑅1212/𝑔 <- 𝑅1212 = 𝐿22𝐿11 - (𝐿21)2 = det (𝐿𝑖𝑗) = 𝐿; ¡Å The Gauss cuvature is determined by the metric form. ▮ [8-57]
∘ The Formula for 𝐊 on the first fundamental form
𝑅m𝑖𝑗k = 𝑔mh ¡Ó𝛤h𝑖k/¡Óu𝑗 + 𝛤r𝑖k 𝛤r𝑗m - switch(𝑗,k) <- by Eqs. (52). (55) and (33); ¡ñ 𝛤r𝑗m = 𝛤hr𝑗 𝑔mh
𝛤𝑖𝑗m = 𝑔mh 𝛤h𝑖k ¾çº¯À» u𝑗¿¡ ´ëÇØ ¹ÌºÐ ¡æ ¡Ó𝛤𝑖km/¡Óu𝑗 = 𝑔mh ¡Ó𝛤h𝑖k/¡Óu𝑗 + 𝛤h𝑖k ¡Ó𝑔mh/¡Óu𝑗, 𝑔mh ¡Ó𝛤h𝑖k/¡Óu𝑗 = ¡Ó𝛤𝑖km/¡Óu𝑗 - 𝛤h𝑖k ¡Ó𝑔mh/¡Óu𝑗
¡Å 𝑅m𝑖𝑗k = ¡Ó𝛤𝑖km/¡Óu𝑗 + 𝛤h𝑖k 𝛤h𝑗m - 𝛤h𝑖k ¡Ó𝑔hm/¡Óu𝑗 - switch(𝑗,k)
𝛤𝑖km = 1/2 (¡Ó𝑔𝑖m/¡Óuk + ¡Ó𝑔mk/¡Óu𝑖 - ¡Ó𝑔k𝑖/¡Óum) <- by Eq. (36); ¡Ó𝑔hm/¡Óu𝑗 = 𝛤h𝑗m + 𝛤m𝑗h = 𝛤h𝑗m + 𝛤rm𝑗 𝑔rh <- Eq. (35a)
𝑅m𝑖𝑗k = 1/2 (¡Ó2𝑔𝑖m/¡Óu𝑗¡Óuk + ¡Ó2𝑔mk/¡Óu𝑗¡Óu𝑖 - ¡Ó2𝑔k𝑖/¡Óu𝑗¡Óum) + 𝛤h𝑖k 𝛤h𝑗m - 𝛤h𝑖k(𝛤h𝑗m + 𝛤rm𝑗 𝑔rh) - switch(𝑗,k)
𝑅m𝑖𝑗k = 1/2 (¡Ó2𝑔km/¡Óu𝑗¡Óu𝑖 - ¡Ó2𝑔𝑗m/¡Óu𝑖¡Óuk + ¡Ó2𝑔𝑖𝑗/¡Óuk¡Óum - ¡Ó2𝑔𝑖k/¡Óu𝑗¡Óum) + (𝛤h𝑖𝑗 𝛤rmk - 𝛤h𝑖k 𝛤rm𝑗)𝑔rh [8-58]
¡Å 𝑅1212 = 1/2((¡Ó2𝑔21/¡Óu1¡Óu2 - ¡Ó2𝑔11/¡Óu2¡Óu2 + ¡Ó2𝑔21/¡Óu2¡Óu1 - ¡Ó2𝑔22/¡Óu1¡Óu1) + (𝛤h21 𝛤r12 - 𝛤h22 𝛤r11)𝑔rh
𝐊 = 𝑅1212/𝑔 = 1/𝑔[𝐹uv - 1/2 𝐸vv - 1/2 𝐺uu + (𝛤h21 𝛤r12 - 𝛤h22 𝛤r11)𝑔rh] ¡æ òÁÎßñ¨øöͧ·Î °¡Á¤Çϸé 𝐹 = 0; by Eq. 40 ¡æ
𝐊 = 1/𝐸𝐺 [- 1/2 𝐸vv - 1/2 𝐺uu + (𝐸v2/4𝐸2 + 𝐸u𝐺u/4𝐸2)𝐸 + (𝐺u2/4𝐺2 + 𝐸v𝐺v/4𝐺2)𝐺] ¡æ with a litte manipulation ¡æ
𝐊 = 1/(2¡î𝐸𝐺) [{¡î𝐸𝐺 𝐺uu- 𝐺u(𝐸𝐺u + 𝐸u𝐺)/(2¡î𝐸𝐺)}/𝐸𝐺 + {¡î𝐸𝐺 𝐸vv- 𝐸v(𝐸𝐺v + 𝐸v𝐺)/(2¡î𝐸𝐺)}/𝐸𝐺] or
𝐊 = 1/(2¡î𝐸𝐺) [¡Ó(𝐺u/¡î𝐸𝐺)/¡Óu + ¡Ó(𝐸v/¡î𝐸𝐺)/¡Óv] [8-59]
∘ The equation of 𝐊
Eq. (56) [𝑅m𝑖𝑗k = 𝐿𝑖k𝐿𝑗m - 𝐿𝑖𝑗𝐿km] looks like 24 = 16 equations but in fact only one equation 𝑅1212 = 𝐿 = 𝐊/𝑔! By Eq. (58),
𝑅m𝑖𝑗k = - 𝑅𝑖m𝑗k, 𝑅m𝑖𝑗k = - 𝑅𝑖mk𝑗, 𝑅m𝑖𝑗k = 𝑅𝑗km𝑖 <- antisymmetry: the first & last pair, symmetry: interchange of them [8-60abc]
𝑅11𝑗k = 𝑅22𝑗k = 𝑅m𝑖11 = 𝑅m𝑖22 = 0.
𝑅1212 = 𝑅2121 = - 𝑅2112 = - 𝑅1221 = 𝐊𝑔.
9. Manifolds(ÒýåÆô÷) <- Figure I-29 ÂüÁ¶ [´Ü, 𝐗¡æ𝐗©ö, 𝐃¡æ𝐃©ö; 𝐗̄¡æ𝐗©÷, 𝐃̄¡æ𝐃©÷]
∘ E3 ³»ÀÇ surface ÍØØüÀÇ ÀϹÝÈ Çʿ伺
ù°, 𝐗:𝐃 ¡æ E3¶ó´Â Á¤ÀÇ´Â ³Ê¹« Á¦ÇÑÀûÀ̶ó ´ÜÀÏ mappingÀÌ ¾ÈµÇ±âµµ Çϸç, ±× °á°ú°¡ ±¹ÁöÀû Á÷°ü¿¡ ¹ÝÇÒ ¼ö ÀÖ½À´Ï´Ù.
µÑ°, ±× Àü°³¸¦ ÁÖ¾îÁø ¸Å°³ÈÇÑ 𝐗·Î ÇÏÁö¸¸, ¿ì¸®´Â ±× 𝐗¿Í µ¶¸³ÀûÀ¸·Î surfaceÀÇ ÂüµÈ ±âÇÏÇÐÀû Ư¼ºÀ» ¾Ë±â¸¦ ¿øÇÕ´Ï´Ù.
¸¶Áö¸·À¸·Î, ¿ì¸®´Â ÀÌ·ÐÀÇ ³»ÀçÀû ºÎºÐÀ» °íÂ÷¿øÀ¸·Î È®ÀåÇØ¾ß Çϴµ¥, E3 vector¿¡ ´ëÇÑ ½ÉÇÑ ÀÇÁ¸ÀÌ ½É°¢ÇÑ °áÇÔÀÔ´Ï´Ù.
∘ 𝐌Àº ±× ¿ø¼ÒµéÀ» points ïÃÀ̶ó ºÎ¸£´Â non-empty set(ÞªÍö ÁýÇÕ)À¸·Î Á¤ÀÇÇÕ´Ï´Ù. ¶ÇÇÑ 𝐌 »óÀÇ ÇÑ coordinate patch
ñ¨øö Á¶°¢À̶õ E2ÀÇ ¿¸° ºÎºÐÁýÇÕ 𝐃¿¡¼ 𝐌À¸·ÎÀÇ ÇÑ one-to-one function 𝐗:𝐃 ¡æ 𝐌ÀÔ´Ï´Ù.
∘ Definition I-12
ÇÑ abstract surface or 2-manifold ´Â ´ÙÀ½ Á¶°ÇÀÇ 𝐌 »óÀÇ coordinate patchµéÀÇ collection 𝒞¿Í ÇÔ²² ÇÏ´Â 𝐌ÁýÇÕÀÌ´Ù.
a. 𝐌Àº 𝒞 ¾ÈÀÇ patchµéÀÇ imageµéÀÇ ÇÕÁýÇÕÀÌ´Ù.
b. 𝒞 ¾ÈÀÇ ±× patchµéÀº overlap smoothly ¸Å²ô·´°Ô ñìôáÇÑ´Ù, Áï, ¸¸¾à 𝐗©ö:𝐃©ö ¡æ 𝐌°ú 𝐗©÷:𝐃©÷ ¡æ 𝐌°¡ 𝒞 ¾ÈÀÇ µÎ patch¶ó¸é,
±× composite function 𝐗̄©÷-1∘ 𝐗©ö ¿Í 𝐗©ö-1∘ 𝐗©÷ ´Â open domains(ïÒëùæ´)À» °®À¸¸ç ¶ÇÇÑ smoothÇÏ´Ù. <- Figure I-29 ÂüÁ¶
c. 𝐌¿¡ µÎ Á¡ 𝐏¿Í 𝐏'°¡ ÁÖ¾îÁö¸é, 𝐏 ∊ 𝐗©ö(𝐃©ö), 𝐏' ∊ 𝐗©÷(𝐃©÷) ±×¸®°í 𝐗©ö(𝐃©ö) ¡û 𝐗©÷(𝐃©÷) = 𝜙(empty set)ÀÎ 𝒞 ¾ÈÀÇ patchµé
𝐗©ö:𝐃©ö ¡æ 𝐌°ú 𝐗©÷:𝐃©÷ ¡æ 𝐌ÀÌ Á¸ÀçÇÑ´Ù <- Hausdorf property: 𝐏, 𝐏' ±Ù¹æ¿¡ ¾È °ãÄ¡´Â patch¸¦ °¢±â °®À» ¼ö ÀÖÀ½
d. 𝒞 ÀÇ ¸ðµç(every) patch¿Í smoothly ÁßøÇÏ´Â 𝐌 »óÀÇ ¾î¶°ÇÑ(any) coordinate patchµµ 𝒞 ¾È¿¡ ÀÖ´Â ±× ÀÚüÀÌ´Ù.
±×·¯ÇÑ Àǹ̿¡¼ the collection 𝒞 ´Â maximal пÓÞÇÏ´Ù.
∘ domain ïÒëùæ´À̶õ functionÀÌ Á¤ÀÇµÈ °¡Àå Å« ÁýÇÕÀ» ÀǹÌÇÕ´Ï´Ù. ¿¹) 𝐗©÷-1∘ 𝐗©ö ÀÇ domain: 𝐗©ö-1[𝐗©ö(𝐃©ö) ¡û 𝐗©÷(𝐃©÷)]
smooth ¸Å²ô·¯¿òÀ̶õ ¿ì¸® ¸ñÀûÀ» À§ÇØ ÃæºÐÈ÷ ¹ÌºÐ °¡´ÉÇÔÀ» ÀǹÌÇÕ´Ï´Ù. (º¸ÅëÀº ÃÖ¼Ò ¿¬¼Ó 3Â÷ÀÇ Æí¹ÌºÐ °¡´ÉÇÔ)
∘ ¶§¶§·Î The collection 𝒞 ´Â 𝐌 »óÀÇ differentiable structure, 𝒞 ÀÇ patches´Â admissible patches ¶ó°íµµ ºÎ¸¨´Ï´Ù.
Definition I-12 (a)(b)(c)¸¸À» ¸¸Á·ÇÏ´Â 𝐌 »óÀÇ patchµéÀÇ ¾î¶² collection 𝒞'°¡ smoothly ÁßøÇÏ´Â ¸ðµç patchµé°ú °áÇÕÇؼ
Áï½Ã 𝐌 »óÀÇ differentiable structure·Î È®ÀåµÉ ¼ö ÀÖ´Ù¸é, 𝒞'´Â ±× differentiable structure¸¦ generate ßæà÷ÇÑ´Ù°í ÇÕ´Ï´Ù.
∘ ÇÑ admissible patch 𝐗©ö:𝐃©ö ¡æ 𝐌°¡ 𝐏ÀÇ local coordinates ÏÑò¢ ñ¨øö¶ó ºÎ¸£´Â À¯ÀÏÇÑ ordered pair 𝐗©ö-1(𝐏) = (u1, u2)¿Í
𝐗©ö(𝐃©ö)ÀÇ °¢ Á¡¿¡¼ °áÇÕÇÕ´Ï´Ù(associate). ¸¸ÀÏ 𝐗©÷:𝐃©÷ ¡æ 𝐌°¡, 𝐗©÷(𝐃©÷)ÀÇ °¢ Á¡¿¡°Ô local coordinates (ū1, ū2)¿Í °áÇÕÇÏ´Â
¾î¶² µÎ¹ø° admissible patch¶ó¸é, 𝐗©ö(𝐃©ö) ¡û 𝐗©÷(𝐃©÷)ÀÇ Á¡µéÀº µÎ°³ÀÇ local coordinates pair (u1, u2)¿Í (ū1, ū2)¸¦ °®À¸¸ç,
composite function 𝐗©÷-1∘ 𝐗©ö ¿Í 𝐗©ö-1∘ 𝐗©÷´Â ū1¿Í ū2¸¦ u1¿Í u2ÀÇ smooth functionÀ¸·Î ¸¸µé¸ç, °Å²Ù·Îµµ ¶ÇÇÑ °°½À´Ï´Ù.
𝐗©÷-1∘ 𝐗©ö ´Â ū𝑖 = ū𝑖 (u1, u2), 𝑖 = 1,2, 𝐗©ö-1∘ 𝐗©÷´Â u𝑖 = u𝑖 (ū1, ū2), 𝑖 = 1,2 [9-61ab]
À̵éÀÌ ¹Ù·Î a change of coordinates ñ¨øöͧ ܨüµÀ» À§ÇÑ ¹æÁ¤½ÄµéÀÔ´Ï´Ù.
∘ ¿ì¸®´Â mapping 𝐗À̶ó ÇÏ´Â ´ë½Å °¡²û ´Ü¼øÈ÷ (u1, u2)¸¦ 𝐌 ¾ÈÀÇ local coordinate systemÀ¸·Î Âü°íÇϱ⵵ ÇÒ °ÍÀÔ´Ï´Ù.
¾Õ¿¡¼ ÇØ¿Â °ÍÀ» °è¼ÓÇϱâ À§ÇØ °¡²ûÀº local coordinates (u, v)¶ó°í ºÎ¸£±âµµ ÇÒ °Ì´Ï´Ù. ¹°·Ð, Section 3¿¡¼ ÀǹÌÇÏ´Â
every parametriized surface´Â a coordinate patchÀÌ¸ç ±× image¿¡´Ù°¡ differential structure¸¦ »ý¼ºÇÕ´Ï´Ù.
∘ ¸¸ÀÏ 𝐏 ∊ 𝐗(𝐃), 𝐗(𝐃) ¡ø 𝛺ÀÎ admissible patch 𝐗:𝐃 ¡æ 𝐌ÀÌ ÀÖÀ¸¸é, 𝐌ÀÇ ÇÑ ºÎºÐÁýÇÕ 𝛺¸¦ 𝐌ÀÇ ÇÑ Á¡ 𝐏ÀÇ neighborhood
ÐÎÛ¨À̶ó°í ºÎ¸¨´Ï´Ù. ¸¸ÀÏ 𝐌ÀÇ ºÎºÐÁýÇÕÀÌ ±× Á¡µé °¢°¢ÀÇ ÇÑ neighborhood¶ó¸é open ¿·ÁÀÖ´Ù°í ºÎ¸¨´Ï´Ù.
∘ Definition I-13
𝛺°¡ 2-mainifold 𝐌ÀÇ ÇÑ ¿¸° ÁýÇÕÀ̶ó°í ÇÏÀÚ. ¸¸ÀÏ function 𝑓 ∘ 𝐗°¡ 𝐌 ¾È¿¡¼ ¸ðµç admissible patch¸¦ À§Çؼ
smoothÇÏ´Ù¸é, function 𝑓:𝛺 ¡æ 𝓡µµ smoothÇÏ´Ù°í ºÎ¸£°Ô µÈ´Ù. ¸¸ÀÏ 𝑓:𝛺 ¡æ 𝓡ÀÌ smoothÇÏ°í 𝐗:𝐃 ¡æ 𝐌°¡ image°¡
𝛺¸¦ ¸¸³ª´Â an admissible patch¶ó¸é, ¡Ó𝑓/¡Óu𝑖: 𝐗(𝐃) ¡û 𝛺 ¡æ 𝓡, 𝑖 = 1,2 ¸¦ ´ÙÀ½°ú °°ÀÌ Á¤ÀÇÇÑ´Ù.
¡Ó𝑓/¡Óu𝑖 ¡Õ [¡Ó(𝑓 ∘ 𝐗)/¡Óu𝑖] ∘ 𝐗-1 [9-62]
Áï, 𝐗(𝐃) ¡û 𝛺¾ÈÀÇ °¢ Á¡¿¡ ´ëÇØ ¡Ó𝑓/¡Óu𝑖(𝐏)= [¡Ó(𝑓 ∘ 𝐗)/¡Óu𝑖] ∘ (𝐗-1(𝐏)). ÀÌ°ÍÀÌ 𝑓ÀÇ u𝑖 ¿¡ ´ëÇÑ partial derivative ÀÌ´Ù.
∘ °¢ 𝑖¿¡ ´ëÇØ ¡Ó/¡Óu𝑖´Â ¹ÌºÐ product ruleÀ» ¸¸Á·ÇÔ. ¡Å ¡Ó/¡Óu𝑖(𝑓𝑔) = 𝑓(¡Ó𝑔/¡Óu𝑖) + 𝑔(¡Ó𝑓/¡Óu𝑖) <- 𝑓, 𝑔ÀÇ domainÀÌ °°´Ù°í °¡Á¤
𝐗©ö(𝐃©ö)¾ÈÀÇ °¢ Á¡¿¡ ´ëÇؼ, ¡Ó/¡Óu𝑖(𝐏)[𝑓] = ¡Ó𝑓/¡Óu𝑖(𝐏) <- 𝑓°¡ 𝐏ÀÇ ÇÑ neighborhood¿¡ Á¤ÀÇµÈ smooth function¶ó°í °¡Á¤
¸¸ÀÏ 𝐗©÷:𝐃©÷ ¡æ 𝐌°¡ ¶Ç´Ù¸¥ admissible patch¶ó¸é, overlap 𝐗©ö(𝐃©ö) ¡û 𝐗©÷(𝐃©÷)¿¡¼ ´ÙÀ½ÀÇ operator Ç×µî½ÄÀ» °®½À´Ï´Ù.
¡Ó/¡Óu𝑖 = (¡Óū𝑗/¡Óu𝑖) ¡Ó/¡Óū𝑗, 𝑖 = 1,2 ¡Ó/¡Óūk = (¡Óu𝑖/¡Óūk) ¡Ó/¡Óu𝑖, k = 1,2 <- from Eq. (61) [9-63ab]
∘ Definition I-14
mÀÌ ¾çÀÇ Á¤¼ö¶ó ÇÏ°í 𝒪´Â EmÀÇ open ºÎºÐÁýÇÕÀ̶ó°í ÇÏÀÚ. ¸¸ÀÏ 𝐌 »óÀÇ 𝐗-1 ∘ 𝑓ÀÌ ¸ðµç admissible patch 𝐗¿¡ ´ëÇØ
smoothÇÏ´Ù¸é, function 𝑓:𝒪 ¡æ 𝐌µµ smoothÇÏ´Ù°í ºÎ¸¥´Ù. ¸¸ÀÏ 𝒪°¡ openÀÌ ¾Æ´Ï¶óµµ, 𝑓°¡ open domainÀ» °®´Â
¾à°£ÀÇ smooth functionÀÎ 𝒪¿¡°Ô¸¸ Á¦ÇÑÀ̸é, ¿ì¸®´Â 𝑓:𝒪 ¡æ 𝐌°¡ smoothÇÏ´Ù°í ºÎ¸¥´Ù. 𝐌 ¾ÈÀÇ ÇÑ curve ÍØàÊÀº
ÇÑ interval¿¡¼ 𝐌À¸·ÎÀÇ ÇÑ smooth functionÀÌ´Ù. µû¶ó¼ 𝛂:𝐼 ¡æ 𝐌ÀÌ 𝐌 ¾ÈÀÇ °î¼±À̸ç 𝐗°¡ 𝛂ÀÇ °ÍÀ» Æ÷ÇÔÇÏ´Â imageÀÇ
ÇÑ admissible patch¶ó¸é, ¿ì¸®´Â smooth function t¿Í (𝐗-1 ∘ 𝛂)(t) = (u1(t), u2(t)) ȤÀº 𝛂(t) = 𝐗(u1(t), u2(t))¸¦ °®´Â´Ù.
∘ ÀÌÁ¦´Â E3ÀÇ vector space stucture°¡ ¾ø±â ¶§¹®¿¡, »õ·Ó°Ô abstract surface¿¡ ´ëÇÑ tangent vector¸¦ Á¤ÀÇÇؾ߸¸ ÇÕ´Ï´Ù.
ÇÏÁö¸¸ E3 ¸ðµç vector´Â ÇØ´ç directional derivative operator¿Í °áÇÕÇÕ´Ï´Ù. 𝐃𝐯 = a ¡Ó/¡Óx + b ¡Ó/¡Óy + c ¡Ó/¡Óz.
±×·¡¼ vector¸¦ arrow°¡ ¾Æ´Ï¶ó operator·Î »ý°¢ÇÏ°í, ¸ÕÀú velocity vector¸¦ °î¼±ÀÇ directional derivative·Î Á¤ÀÇÇÕ´Ï´Ù.
∘ Definition I-15
𝛂:𝐼 ¡æ 𝐌°¡ the 2-manifold 𝐌 »óÀÇ °î¼±À̶ó°í ÇÏÀÚ. 𝛂ÀÇ 𝛂(t)¿¡¼ÀÇ velocity vector ´Â 𝛂(t)ÀÇ ÇÑ neighborhood¿¡ Á¤ÀǵÈ
¸ðµç smooth real-valued function 𝑓¸¦ À§ÇÑ ´ÙÀ½ÀÇ operator 𝛂'(t)ÀÌ´Ù. 𝛂'(t)[𝑓] = (𝑓 ∘ 𝛂)'(t) = d/dt [𝑓(𝛂(t))]
∘ Definition I-16
𝐏°¡ 2-manifold 𝐌 »óÀÇ ÇÑ Á¡À̶ó°í ÇÏÀÚ. ¸¸ÀÏ 𝐏¸¦ Åë°úÇϸç 𝐏¿¡¼ velocity vector 𝐯¸¦ °®´Â 𝐌 ¾ÈÀÇ °î¼±ÀÌ Á¸ÀçÇϸé,
𝐌ÀÇ °¢ smooth real-valued function 𝑓¿¡ ½Ç¼ö 𝐯[𝑓]¸¦ ºÎ¿©ÇÏ´Â operator 𝐯¸¦ 𝐌 at 𝐏·ÎÀÇ tangent vector ¶ó ºÎ¸¥´Ù.
𝐌 at 𝐏·ÎÀÇ ¸ðµç tangent vectorÀÇ ÁýÇÕÀ» 𝐌 at 𝐏ÀÇ the tangent plane ¶ó°í ºÎ¸£¸ç, 𝐓𝐏𝐌 À̶ó°í Ç¥±âÇÑ´Ù.
∘ 𝛂´Â 𝐌 »ó °î¼±ÀÌ°í 𝐗:𝐃 ¡æ 𝐌´Â ¾î¶² °íÁ¤µÈ t¸¦ À§ÇÑ ÇÑ Á¡ 𝛂(t)ÀÇ neighborhoodÀÇ local coordinates (u1, u2)¸¦ Á¤ÀÇÇÏ´Â
ÇÑ admissble patch¶ó°í ÇսôÙ. ±×·¯¸é ¾î¶² 𝐌 »óÀÇ smooth function 𝑓¸¦ À§Çؼ (from multivariable chain rule),
𝛂'(t)[𝑓] = d/dt [𝑓 ∘ 𝐗(u1(t), u2(t))] = ¡Ó(𝑓 ∘ 𝐗)/¡Óu𝑖 (𝐗-1∘ 𝛂(t)) du𝑖/dt = ¡Ó𝑓/¡Óu𝑖 (𝛂(t)) u𝑖'(t)
µû¶ó¼ 𝛂'(t) = u𝑖'(t) ¡Ó/¡Óu𝑖(t) ȤÀº Ãà¾àµÈ Ç¥ÇöÀ¸·Î 𝛂' = u𝑖'¡Ó/¡Óu𝑖 [9-64]
±×·¯¹Ç·Î ÇÑ Á¡ 𝐏 = 𝐗(u1, u2)ÀÇ ¾î¶² tangent vector 𝐯´Â ¡Ó/¡Óu1(𝐏)°ú ¡Ó/¡Óu2(𝐏)ÀÇ ¼±Çü °áÇÕÀÔ´Ï´Ù.
𝐯 = v𝑖 ¡Ó/¡Óu𝑖(𝐏) <- tangent vector, °è¼ö 𝐯[u𝑖] = v𝑗, 𝑗 = 1,2 (¡ñ u𝑗/u𝑖 = 𝛿𝑗𝑖) [9-65]
𝐓𝐏𝐌Àº ÀÌó·³ ¡Ó/¡Óu1(𝐏)°ú ¡Ó/¡Óu2(𝐏)·Î »ý¼ºµÈ(spanned) ÇÑ vector spaceÀÔ´Ï´Ù. (µÎ vecter´Â ¼±Çü µ¶¸³ÇÏ¸ç ±âÀú°¡ µÊ.)
∘ µÎ°³ÀÇ local coordinates systemÀ» Àû¿ëÇϸé, tangent vector 𝐯´Â µÎ°¡Áö coordinate Ç¥Çö(representation)À» °®½À´Ï´Ù.
𝐯 = v𝑖 ¡Ó/¡Óu𝑖(𝐏) = v̄𝑗 ¡Ó/¡Óū𝑗(𝐏) [9-66]
v̄𝑗 = v𝑖 ¡Óū𝑗/¡Óu𝑖(𝐏), 𝑗 = 1,2, v𝑖 = v̄𝑗 ¡Óu𝑖/¡Óū𝑗(𝐏), 𝑖 = 1,2 <- by Eq. (66) [9-67ab]
∘ Definition I-17
𝒱°¡ 𝓡 À§·Î a vector space¶ó ÇÏÀÚ. 𝒱 »óÀÇ inner product Ò®îÝÀ̶õ 𝒱 ¾ÈÀÇ °¢ vector ½Ö 𝐯, 𝐰¿¡ ´ÙÀ½°ú °°Àº ¼Ó¼º¿¡
µû¶ó ½Ç¼ö <𝐯, 𝐰>¸¦ ÇÒ´çÇÏ´Â ÇÑ ±ÔÄ¢(rule)ÀÌ´Ù.
a. <𝐯, 𝐰> = <𝐰, 𝐯> (< , >Àº symmetric ÓßöàÀÌ´Ù)
b. <𝑎𝐯 + 𝑎'𝐯',𝐰> = 𝑎<𝐯, 𝐰> + 𝑎'<𝐯', 𝐰> ±×¸®°í <𝐯, 𝑎𝐰 + 𝑎'𝐰'> = 𝑎<𝐯, 𝐰> + 𝑎'<𝐯, 𝐰'> (< , >Àº bilinear ì£ñìàÊû¡ÀÌ´Ù)
c. <𝐯, 𝐯> ≧ 0 (𝒱 ¾ÈÀÇ ¸ðµç 𝐯¿¡ Àû¿ë), only if 𝐯 = 𝟎, <𝐯, 𝐯> = 0 (< , >Àº positive definite åÕÀÇ ïÒݬûÜÀÌ´Ù)
∘ Definition I-18
2-manifold 𝐌 »óÀÇ Riamannian metric (ȤÀº metric)Àº 𝐌ÀÇ °¢ tangent plane·ÎÀÇ inner product < , >ÀÇ ÇÑ ÇÒ´çÀÌ´Ù.
°¢ coordinate patch 𝐗:𝐃 ¡æ 𝐌¸¦ À§ÇÏ¿©, function 𝑔𝑖𝑗: 𝐗(𝐃) ¡æ 𝓡Àº ´ÙÀ½°ú °°ÀÌ Á¤ÀǵǸç, À̵éÀº smoothÇؾ߸¸ ÇÑ´Ù.
𝑔𝑖𝑗(𝐏) = <¡Ó/¡Óu𝑖 (𝐏), ¡Ó/¡Óu𝑗 (𝐏)>, 𝑖,𝑗 = 1,2 [9-68]
Rimannian metricÀ¸·Î ±¸ºñµÈ ÇϳªÀÇ 2-manifold¸¦ a Riamannian 2-manifold ¶ó°í ºÎ¸¥´Ù. ¸¸¾à Definition 1-17ÀÇ ¼Ó¼º
c¸¦ ¾Æ·¡¿Í °°Àº ´õ ¾àÇÑ Á¶°Ç c'·Î ´ëÄ¡ÇÏ¸é ¾ÕÀÇ Á¤ÀǸ¦ a semi-Riamannian 2-manifold ¶ó°í ºÎ¸¥´Ù.
c'. ¸¸¾à 𝒱 ¾ÈÀÇ ¸ðµç 𝐰¿¡°Ô¼ <𝐯, 𝐰> = 0 À̶ó¸é, 𝐯 = 𝟎(< , >Àº nonsigular ïáöÎÀÌ´Ù)
∘ Definition 1-17 (a)·ÎºÎÅÍ ¿ì¸®´Â °¢ local coordinate system 𝑔𝑖𝑗 = 𝑔𝑗𝑖 (¸ðµç 𝑖,𝑗¿¡ Àû¿ë)ÀÌ µË´Ï´Ù. 𝑔 = det (𝑔𝑖𝑗)¶ó°í Á¤ÇÕ´Ï´Ù.
¸¸¾à (ū1, ū2)°¡ µÎ¹ø° local coordinate systemÀ̶ó°í Çϸé, ¿ì¸®´Â À¯»çÇÑ function 𝑔̄𝑖𝑗 = <¡Ó/¡Óū𝑖, ¡Ó/¡Óū𝑗> À» °®½À´Ï´Ù.
𝑔̄mn = 𝑔𝑖𝑗 ¡Óu𝑖/¡Óūm ¡Óu𝑗/¡Óūn, m,n = 1,2 𝑔𝑖𝑗 = 𝑔̄mn ¡Óūm/¡Óu𝑖 ¡Óūn/¡Óu𝑗, 𝑖,𝑗 = 1,2 [9-69ab]
¸¸¾à ÁÖ¾îÁø Á¡¿¡¼ tangent vector°¡ 𝐯 = v𝑖 ¡Ó/¡Óu𝑖 ±×¸®°í 𝐰 = w𝑗 ¡Ó/¡Óu𝑗 À̸é, <𝐯, 𝐰> = 𝑔𝑖𝑗v𝑖w𝑗 [9-70]
Eq. (70)ÀÇ Áº¯ÀÌ coordinateÀÇ ¼±Åÿ¡ µ¶¸³ÀûÀ̹ǷÎ, ¿ìº¯µµ ¸¶Âù°¡ÁöÀÔ´Ï´Ù. ±×·¯¹Ç·Î ´Ù¸¥ local coordinate systemÀÇ
𝑔̄𝑖𝑗v̄𝑖w̄𝑗 µµ °°Àº °ª, <𝐯, 𝐰>¸¦ °®¾Æ¾ß¸¸ ÇÕ´Ï´Ù. ¹Ù²Ù¾î ¸»Çϸé, 𝑔𝑖𝑗v𝑖w𝑗 Àº an invariant ÜôܨÕáÀÔ´Ï´Ù.
∘ ¾î¶² tangent vector 𝐯 ¸¦ À§Çؼ, ¡«𝐯¡«= <𝐯, 𝐯>1/2 ¶ó°í Á¤ÀÇÇÕ´Ï´Ù. ¸¸ÀÏ 𝛂 = 𝛂(t), a ¡Â t ¡Â b,°¡ 𝐌 ¾ÈÀÇ °î¼±À̶ó Çϸé,
¿ì¸®´Â ±× °î¼±ÀÇ ±æÀ̸¦ Section 1¿¡¼ ó·³, ´ÙÀ½°ú °°ÀÌ Á¤ÀÇÇÕ´Ï´Ù, 𝐿 = ¡òba¡«𝛂'(t)¡«dt.
¸¸ÀÏ s = s(t)°¡ 𝛂(a)·ÎºÎÅÍ 𝛂(b)±îÁöÀÇ °î¼± °Å¸®¸¦ ³ªÅ¸³½´Ù¸é, 𝛂(t)ÀÇ neighborhood ¾ÈÀÇ ¾î¶² local coordinate systemÀ»
À§Çؼµµ ´ÙÀ½°ú °°ÀÌ Á¤Àǵ˴ϴÙ. (ds/dt)2 = 𝑔𝑖𝑗 du𝑖/dt du𝑗/dt [9-71]
Eq. (71) ¿ìÃøº¯ÀÇ invariant Ç¥Çö(ÜôܨãÒ)ÀÌ 2-manifoldÀÇ the metric ͪÕá ȤÀº fundamental form ÐñÜâû¡ãÒÀÔ´Ï´Ù.
∘ local coordinateÀÇ °¢ system¿¡¼, (𝑔𝑖𝑗)¸¦ (𝑔𝑖𝑗)ÀÇ ¿ªÇà·Ä(matrix inverse), Áï, 𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑘𝑖 (𝑖,𝑘 = 1,2)¶ó°í Á¤ÀÇÇÕ´Ï´Ù. ±×·¯¸é
¿ì¸®´Â Eqs. (36) (37)À» Á¤ÀǷΠäÅÃÇÔÀ¸·Î½á °¢ coordinate system¿¡¼ Christoffel symbols À» Á¤ÀÇÇÒ ¼ö ÀÖ½À´Ï´Ù.
∘ Definition I-19
¸¸ÀÏ s°¡ È£ÀÇ ±æÀÌÀÎ 𝛂 = 𝛂(s)°¡ 𝐌 ¾ÈÀÇ °î¼±À̶ó¸é, ¶ÇÇÑ 𝛂 Æí¿¡ Á¤ÀÇµÈ °¢ local coordinate system¿¡¼ ´ÙÀ½°ú °°À¸¸é,
𝛂´Â a geodesic À̶ó ºÎ¸¥´Ù. d2ur/ds2 + 𝛤r𝑖𝑗 du𝑖/ds du𝑗/ds = 0, r = 1,2 [9-72]
[¸¸ÀÏ Eq. (72)°¡ ÇÑ coordinate system¿¡¼ À¯ÁöµÇ¸é, µÎ systemÀÌ ÁßøµÇ´Â °÷¿¡¼, ´Ù¸¥ µ¥¿¡¼µµ ¹°·Ð À¯ÁöµË´Ï´Ù!]
∘ Theorems 1-9°ú 1-10Àº ±× Áõ¸í¿¡ ÀÖ¾î ´ÜÁö ºÎ¼öÀûÀÎ º¯°æ¸¸À¸·Î Rimannian 2-manifolds·Î È®ÀåµË´Ï´Ù. ½ÇÁ¦·Î ³»ÀçÀûÀÎ
¸Å°³ÈµÈ °î¸éÀ» À§ÇÑ °³³ä°ú °á°úµéµµ ÀϹÝÀû Riamannian 2-manifolds·Î È®ÀåµË´Ï´Ù. ÀÌ sectionÀÇ ¸ðµç ±âº» ¾ÆÀ̵ð¾î´Â
´õ °íÂ÷¿øÀ¸·Î ÀϹÝÈÇÕ´Ï´Ù. ¸¸ÀÏ ¸ðµç coordinate patch 𝐗:𝐃 ¡æ 𝐌ÀÇ domain 𝐃°¡ Euclidean n-space EnÀÇ ºÎºÐÁýÇÕÀ̸é,
Definition 1-12Àº n-manifoldÀÇ Á¤ÀÇ°¡ µË´Ï´Ù. Local coordinates´Â ±×·¯¸é n-tuples (u1, u2 ..... un)ÀÌ°í, ¶ÇÇÑ °¢ Á¡ 𝐏¿¡¼,
tangent "plane"Àº ÀÌÁ¦ ¡Ó/¡Óu1(𝐏), ¡Ó/¡Óu2(𝐏) ..... ¡Ó/¡Óun(𝐏)¿¡ ÀÇÇØ »ý¼ºµÈ n-dimensional tangent space ïÈÍöÊàÀÔ´Ï´Ù.
∘ ¸ðµç Áö¼öµéÀÌ 1¿¡¼ 𝑛±îÁö °ªÀ» °®°í, (𝑔𝑖𝑗)´Â 𝑛 x 𝑛 ´ëĪ Çà·ÄÀÔ´Ï´Ù. curvature tensor 𝑅h𝑖𝑗𝑘ÀÇ µ¶¸³ ¼ººÐÀº 𝑛2(𝑛2 -1)/12°³
À̹ǷÎ, ¿¹¸¦ µé¾î 3Â÷¿ø¿¡¼´Â 6, 4Â÷¿ø¿¡¼´Â 20ÀÌ µË´Ï´Ù. °á°úÀûÀ¸·Î curvature¸¦ ±â¼úÇÏ·Á¸é ÇÑ function 𝐊(𝐏)º¸´Ù´Â ´õ
¸¹ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¸¸ÀÏ ¾î¶² coordinate patch 𝐗:𝐃 ¡æ 𝐌¸¦ À§Çؼ 𝐗(𝐃) Àüü¿¡¼ 𝑅h𝑖𝑗𝑘 = 0 (for all h,𝑖,𝑗,𝑘) ÀÌ µÈ´Ù¸é, 𝐗(𝐃)´Â
flat øÁøÁÇÑ, Áï, ±¹ÁöÀûÀ¸·Î À¯Å¬¸®µå °ø°£°ú isometricÇÑ(ÔõËå×îÀÎ) °æ¿ìÀÔ´Ï´Ù.
p.s. óÀ½ Á¢ÇÑ ¹ÌºÐ±âÇÏÇÐÀ» Á¦°¡ ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï Àú¼úÇϽŠBoston College Richard Faber ±³¼ö¿¡°Ô °æÀǸ¦ Ç¥ÇÔ!
¿î ÁÁ°Ôµµ ÇöÀç East Tennessee States UniversityÀÇ Robert Gardner ±³¼öÀÇ 'Classnotes' (u. 7/2019)°¡ °ø°³µÇ¾î Àֳ׿ä~
ÃÖ±Ù µ¿Ã¢ÀÎ Àç¹Ì ¼öÇÐÀÚ°¡ À̸¦ ¾Ë·ÁÁÖ¾î¼ Definition I-9 Áõ¸í¿¡ µµ¿òÀ» ¹Þ¾Ò´Âµ¥, ´ëÇпøÀÇ °ÀÇ ³ëÆ®¶ó°í ÇÔ.
(* ÀÌ Ã¥¿¡¼´Â tensor¿¡ °ü·ÃÇؼ´Â º»°ÝÀûÀÎ ³íÀǸ¦ ¾Ê°í ¸ðµç ÁÂÇ¥°è º¯È¯¿¡¼ ºÒº¯ÇÏ´Ù´Â °Í¸¸ ¾ð±Þ) |
|
|