±âº» ÆäÀÌÁö Æ÷Æ®Æú¸®¿À ´ëÇѹα¹ÀÇ ÀüÅë°ÇÃà Áß±¹°ú ÀϺ»ÀÇ ÀüÅë°ÇÃà ¼­À¯·´°ú ¹Ì±¹ÀÇ °ÇÃà ±¹¿ª û¿À°æ Çö´ë ¿ìÁÖ·Ð ´ëÇѹα¹ÀÇ »êdz°æ ¹éµÎ´ë°£ Á¾ÁÖ»êÇà ³×ÆÈ È÷¸»¶ó¾ß Æ®·¹Å· ¸ùºí¶û Áö¿ª Æ®·¹Å· ¿ä¼¼¹ÌƼ ij³â µî Ƽº£Æ® ½ÇÅ©·Îµå ¾ß»ý »ý¹° Æijë¶ó¸¶»çÁø °¶·¯¸® Ŭ·¡½Ä ·¹ÄÚµå °¶·¯¸® AT Æ÷·³ Æ®·¹Å· Á¤º¸ ¸µÅ©


 ·Î±×ÀÎ  È¸¿ø°¡ÀÔ

¹ÌºÐ±âÇÏÇÐ 4. Riemann °î·üÅÙ¼­; ´Ù¾çü
    ±è°ü¼®  2019-06-16 16:55:58, Á¶È¸¼ö : 1,330
- Download #1 : dff_1_4.jpg (54.1 KB), Download : 2



8. Curvature Tensor And The Theorema Egregium(»©¾î³­ ïÒ×â)

     ∘  The Gauss Formulars: 𝐗𝑖k = 𝛤h𝑖k 𝐗h + 𝐿𝑖k 𝐔,  𝑖k = 1,2 <- Eq.(17)   [8-47]
     ∘  The Weingarten Formulars: 𝐔𝑗 = - 𝐿𝑗𝑖 𝐗𝑗,  𝑖 = 1,2;  𝐿𝑗𝑖 = 𝐿𝑖𝑘𝑔𝑘𝑗, 𝑖 = 1,2  <- Eq. (28)   [8-48]

     ∘  Theorem I-11 (Theorema Egregium ) »©¾î³­ ïÒ×â  
         ÇÑ °î¸éÀÇ the Gauss cuvature´Â the metric form, ±×¸®°í ±× ù¹ø°¿Í µÎ¹ø° derivatives(ÓôùÞâ¦)ÀÇ °è¼öµéÀÇ ÇÔ¼öÀÌ´Ù.  
         ±×·¯¹Ç·Î intrinsicÇÏ´Ù(Ò®î¤îÜÀÌ´Ù).     
         Proof. 𝐗𝑖k𝑗 = ¡Ó𝛤h𝑖k/¡Óu𝑗 𝐗h + 𝛤h𝑖k 𝐗h𝑗 + ¡Ó𝐿𝑖k/¡Óu𝑗 𝐔 + 𝐿𝑖k 𝐔𝑗  <- Eq. (47)ÀÇ ¾çº¯À» u𝑗¿¡ ´ëÇØ ¹ÌºÐÇÏ°í ¡Ó𝐗𝑖k/¡Óu𝑗¸¦ 𝐗𝑖k 𝑗¶ó Ç¥±âÇÔ
         𝐗𝑖k𝑗 = (¡Ó𝛤h𝑖k/¡Óu𝑗 + 𝛤r𝑖k𝛤hr𝑗 - 𝐿𝑖k𝐿h𝑗)𝐗h + (𝛤r𝑖k𝐿r𝑗 + ¡Ó𝐿𝑖k/¡Óu𝑗) 𝐔  <- 𝐔𝑗 = - 𝐿h𝑗 𝐗h,  𝛤h𝑖k 𝐗h𝑗¡æ 𝛤r𝑖k 𝐗r𝑗(index Á¶Á¤)   [8-49]
         𝐗𝑖𝑗k = (¡Ó𝛤h𝑖𝑗/¡Óuk + 𝛤r𝑖𝑗𝛤hrk - 𝐿𝑖𝑗𝐿hk)𝐗h + (𝛤r𝑖𝑗𝐿rk + ¡Ó𝐿𝑖𝑗/¡Óuk) 𝐔  <- switching 𝑗 and k   [8-50]
         ¡Ó𝛤h𝑖k/¡Óu𝑗 - ¡Ó𝛤h𝑖𝑗/¡Óuk + 𝛤r𝑖k𝛤hr𝑗 - 𝛤r𝑖𝑗𝛤hrk = 𝐿𝑖k𝐿h𝑗 - 𝐿𝑖𝑗𝐿hk  <-  𝐗𝑖k𝑗 = 𝐗𝑖𝑗k ¡ñ ø¶Ú°ÝÂÀÇ ¼ø¼­´Â ¹«°üÇÔ   [8-51]                    
         𝑅h𝑖𝑗k =  ¡Ó𝛤h𝑖k/¡Óu𝑗 - ¡Ó𝛤h𝑖𝑗/¡Óuk + 𝛤r𝑖k𝛤hr𝑗 - 𝛤r𝑖𝑗𝛤hrk,  h,𝑖,𝑗,k = 1,2  <- Christoffel ±âÈ£´Â 𝑔𝑖𝑗°ü·Ã ÇÔ¼öÀ̹ǷΠintrinsic!   [8-52]
         𝑅h𝑖𝑗k = -𝑅h𝑖k𝑗  <- Riemann-Christoffel curvature tensor *   [8-53]        
         𝑅h𝑖𝑗k = 𝐿𝑖k𝐿h𝑗 - 𝐿𝑖𝑗𝐿hk  <- Riemann-Christoffel curvature tensor on the second fundamental form  [8-54]
         𝑅m𝑖𝑗k ¡Õ 𝑔mh 𝑅h𝑖𝑗k  <- by Eq. (52) intrinsic!;  𝑅r𝑖𝑗k ¡Õ 𝑔mr 𝑅mm𝑖𝑗k [inverse relation by Eq. (12)]   [8-55]
         𝑅m𝑖𝑗k =  𝐿𝑖k𝐿𝑗m - 𝐿𝑖𝑗𝐿km  <- Eq. (54) ¾çº¯¿¡ 𝑔mh °öÇÏ°í Eq. (27) [𝐿𝑖𝑗 ¡Õ 𝐿𝑗𝑘 𝑔𝑘𝑖,  𝑖,𝑗 =1,2]¿¡ µû¶ó Á¤¸®ÇÔ   [8-56]
         𝐊 = 𝑅1212/𝑔  <- 𝑅1212 = 𝐿22𝐿11 - (𝐿21)2 = det (𝐿𝑖𝑗) = 𝐿; ¡Å The Gauss cuvature is determined by the metric form. ▮   [8-57]

     ∘  The Formula for 𝐊 on the first fundamental form  
         𝑅m𝑖𝑗k = 𝑔mh ¡Ó𝛤h𝑖k/¡Óu𝑗 + 𝛤r𝑖k 𝛤r𝑗m - switch(𝑗,k)  <- by Eqs. (52). (55) and (33); ¡ñ 𝛤r𝑗m = 𝛤hr𝑗 𝑔mh
         𝛤𝑖𝑗m = 𝑔mh 𝛤h𝑖k ¾çº¯À» u𝑗¿¡ ´ëÇØ ¹ÌºÐ ¡æ ¡Ó𝛤𝑖km/¡Óu𝑗 = 𝑔mh ¡Ó𝛤h𝑖k/¡Óu𝑗 + 𝛤h𝑖k ¡Ó𝑔mh/¡Óu𝑗,  𝑔mh ¡Ó𝛤h𝑖k/¡Óu𝑗 = ¡Ó𝛤𝑖km/¡Óu𝑗 - 𝛤h𝑖k ¡Ó𝑔mh/¡Óu𝑗
         ¡Å 𝑅m𝑖𝑗k = ¡Ó𝛤𝑖km/¡Óu𝑗 + 𝛤h𝑖k 𝛤h𝑗m - 𝛤h𝑖k ¡Ó𝑔hm/¡Óu𝑗 - switch(𝑗,k)
         𝛤𝑖km = 1/2 (¡Ó𝑔𝑖m/¡Óuk + ¡Ó𝑔mk/¡Óu𝑖 - ¡Ó𝑔k𝑖/¡Óum)  <- by Eq. (36);  ¡Ó𝑔hm/¡Óu𝑗 = 𝛤h𝑗m + 𝛤m𝑗h = 𝛤h𝑗m + 𝛤rm𝑗 𝑔rh  <- Eq. (35a)
         𝑅m𝑖𝑗k = 1/2 (¡Ó2𝑔𝑖m/¡Óu𝑗¡Óuk + ¡Ó2𝑔mk/¡Óu𝑗¡Óu𝑖 - ¡Ó2𝑔k𝑖/¡Óu𝑗¡Óum) +  𝛤h𝑖k 𝛤h𝑗m - 𝛤h𝑖k(𝛤h𝑗m + 𝛤rm𝑗 𝑔rh)  - switch(𝑗,k)
         𝑅m𝑖𝑗k = 1/2 (¡Ó2𝑔km/¡Óu𝑗¡Óu𝑖 -  ¡Ó2𝑔𝑗m/¡Óu𝑖¡Óuk + ¡Ó2𝑔𝑖𝑗/¡Óuk¡Óum - ¡Ó2𝑔𝑖k/¡Óu𝑗¡Óum) +  (𝛤h𝑖𝑗 𝛤rmk - 𝛤h𝑖k 𝛤rm𝑗)𝑔rh   [8-58]
         ¡Å 𝑅1212 = 1/2((¡Ó2𝑔21/¡Óu1¡Óu2 -  ¡Ó2𝑔11/¡Óu2¡Óu2 + ¡Ó2𝑔21/¡Óu2¡Óu1 - ¡Ó2𝑔22/¡Óu1¡Óu1) +  (𝛤h21 𝛤r12 - 𝛤h22 𝛤r11)𝑔rh
         𝐊 = 𝑅1212/𝑔 = 1/𝑔[𝐹uv - 1/2 𝐸vv - 1/2 𝐺uu + (𝛤h21 𝛤r12 - 𝛤h22 𝛤r11)𝑔rh] ¡æ òÁÎßñ¨øöͧ·Î °¡Á¤Çϸé 𝐹 = 0; by Eq. 40 ¡æ
         𝐊 = 1/𝐸𝐺 [- 1/2 𝐸vv - 1/2 𝐺uu + (𝐸v2/4𝐸2 +  𝐸u𝐺u/4𝐸2)𝐸 +  (𝐺u2/4𝐺2 +  𝐸v𝐺v/4𝐺2)𝐺] ¡æ with a litte manipulation ¡æ
         𝐊 = 1/(2¡î𝐸𝐺) [{¡î𝐸𝐺 𝐺uu- 𝐺u(𝐸𝐺u + 𝐸u𝐺)/(2¡î𝐸𝐺)}/𝐸𝐺  + {¡î𝐸𝐺 𝐸vv- 𝐸v(𝐸𝐺v + 𝐸v𝐺)/(2¡î𝐸𝐺)}/𝐸𝐺] or
         𝐊 = 1/(2¡î𝐸𝐺) [¡Ó(𝐺u/¡î𝐸𝐺)/¡Óu + ¡Ó(𝐸v/¡î𝐸𝐺)/¡Óv]   [8-59]
     ∘   The equation of 𝐊  
         Eq. (56) [𝑅m𝑖𝑗k =  𝐿𝑖k𝐿𝑗m - 𝐿𝑖𝑗𝐿km] looks like 24 = 16 equations but in fact only one equation 𝑅1212 = 𝐿 = 𝐊/𝑔!  By Eq. (58),
         𝑅m𝑖𝑗k = - 𝑅𝑖m𝑗k,  𝑅m𝑖𝑗k = - 𝑅𝑖mk𝑗,  𝑅m𝑖𝑗k = 𝑅𝑗km𝑖 <- antisymmetry: the first & last pair, symmetry: interchange of them   [8-60abc]
         𝑅11𝑗k = 𝑅22𝑗k = 𝑅m𝑖11 = 𝑅m𝑖22 = 0.
         𝑅1212 = 𝑅2121 = - 𝑅2112 = - 𝑅1221 = 𝐊𝑔.

9. Manifolds(ÒýåÆô÷) <- Figure I-29 ÂüÁ¶ [´Ü, 𝐗¡æ𝐗©ö, 𝐃¡æ𝐃©ö; 𝐗̄¡æ𝐗©÷, 𝐃̄¡æ𝐃©÷]  

      ∘  E3 ³»ÀÇ surface ÍØØüÀÇ ÀϹÝÈ­ Çʿ伺  
         ù°,  𝐗:𝐃 ¡æ E3¶ó´Â Á¤ÀÇ´Â ³Ê¹« Á¦ÇÑÀûÀ̶ó ´ÜÀÏ mappingÀÌ ¾ÈµÇ±âµµ Çϸç, ±× °á°ú°¡ ±¹ÁöÀû Á÷°ü¿¡ ¹ÝÇÒ ¼ö ÀÖ½À´Ï´Ù. 
         µÑ°,  ±× Àü°³¸¦ ÁÖ¾îÁø ¸Å°³È­ÇÑ 𝐗·Î ÇÏÁö¸¸, ¿ì¸®´Â ±× 𝐗¿Í µ¶¸³ÀûÀ¸·Î surfaceÀÇ ÂüµÈ ±âÇÏÇÐÀû Ư¼ºÀ» ¾Ë±â¸¦ ¿øÇÕ´Ï´Ù.  
         ¸¶Áö¸·À¸·Î, ¿ì¸®´Â ÀÌ·ÐÀÇ ³»ÀçÀû ºÎºÐÀ» °íÂ÷¿øÀ¸·Î È®ÀåÇØ¾ß Çϴµ¥, E3 vector¿¡ ´ëÇÑ ½ÉÇÑ ÀÇÁ¸ÀÌ ½É°¢ÇÑ °áÇÔÀÔ´Ï´Ù.  
     ∘   𝐌Àº ±× ¿ø¼ÒµéÀ» points ïÃÀ̶ó ºÎ¸£´Â non-empty set(ÞªÍö ÁýÇÕ)À¸·Î Á¤ÀÇÇÕ´Ï´Ù. ¶ÇÇÑ 𝐌 »óÀÇ ÇÑ coordinate patch
         ñ¨øö Á¶°¢À̶õ E2ÀÇ ¿­¸° ºÎºÐÁýÇÕ 𝐃¿¡¼­ 𝐌À¸·ÎÀÇ ÇÑ one-to-one function 𝐗:𝐃 ¡æ 𝐌ÀÔ´Ï´Ù.  

     ∘  Definition I-12
         ÇÑ abstract surface or 2-manifold ´Â ´ÙÀ½ Á¶°ÇÀÇ 𝐌 »óÀÇ coordinate patchµéÀÇ collection 𝒞¿Í ÇÔ²² ÇÏ´Â 𝐌ÁýÇÕÀÌ´Ù.
         a.  𝐌Àº 𝒞 ¾ÈÀÇ patchµéÀÇ imageµéÀÇ ÇÕÁýÇÕÀÌ´Ù.  
         b.  𝒞 ¾ÈÀÇ ±× patchµéÀº overlap smoothly ¸Å²ô·´°Ô ñìôáÇÑ´Ù, Áï, ¸¸¾à 𝐗©ö:𝐃©ö ¡æ 𝐌°ú 𝐗©÷:𝐃©÷ ¡æ 𝐌°¡ 𝒞 ¾ÈÀÇ µÎ patch¶ó¸é,
              ±× composite function 𝐗̄©÷-1∘ 𝐗©ö ¿Í 𝐗©ö-1∘ 𝐗©÷ ´Â open domains(ïÒëùæ´)À» °®À¸¸ç ¶ÇÇÑ smoothÇÏ´Ù.  <- Figure I-29 ÂüÁ¶
         c.  𝐌¿¡ µÎ Á¡ 𝐏¿Í 𝐏'°¡ ÁÖ¾îÁö¸é,  𝐏 ∊ 𝐗©ö(𝐃©ö), 𝐏' ∊ 𝐗©÷(𝐃©÷) ±×¸®°í 𝐗©ö(𝐃©ö) ¡û 𝐗©÷(𝐃©÷) = 𝜙(empty set)ÀÎ 𝒞 ¾ÈÀÇ patchµé  
              𝐗©ö:𝐃©ö ¡æ 𝐌°ú 𝐗©÷:𝐃©÷ ¡æ 𝐌ÀÌ Á¸ÀçÇÑ´Ù   <- Hausdorf property: 𝐏, 𝐏' ±Ù¹æ¿¡ ¾È °ãÄ¡´Â patch¸¦ °¢±â °®À» ¼ö ÀÖÀ½
         d.  𝒞 ÀÇ ¸ðµç(every) patch¿Í smoothly ÁßøÇÏ´Â 𝐌 »óÀÇ ¾î¶°ÇÑ(any) coordinate patchµµ 𝒞 ¾È¿¡ ÀÖ´Â ±× ÀÚüÀÌ´Ù.
              ±×·¯ÇÑ Àǹ̿¡¼­ the collection 𝒞 ´Â maximal пÓÞÇÏ´Ù.

     ∘   domain ïÒëùæ´À̶õ functionÀÌ Á¤ÀÇµÈ °¡Àå Å« ÁýÇÕÀ» ÀǹÌÇÕ´Ï´Ù. ¿¹) 𝐗©÷-1∘ 𝐗©ö ÀÇ domain: 𝐗©ö-1[𝐗©ö(𝐃©ö) ¡û 𝐗©÷(𝐃©÷)]                       
         smooth ¸Å²ô·¯¿òÀ̶õ ¿ì¸® ¸ñÀûÀ» À§ÇØ ÃæºÐÈ÷ ¹ÌºÐ °¡´ÉÇÔÀ» ÀǹÌÇÕ´Ï´Ù. (º¸ÅëÀº ÃÖ¼Ò ¿¬¼Ó 3Â÷ÀÇ Æí¹ÌºÐ °¡´ÉÇÔ)
     ∘   ¶§¶§·Î The collection 𝒞 ´Â 𝐌 »óÀÇ differentiable structure, 𝒞 ÀÇ patches´Â admissible patches ¶ó°íµµ ºÎ¸¨´Ï´Ù.        
         Definition I-12 (a)(b)(c)¸¸À» ¸¸Á·ÇÏ´Â 𝐌 »óÀÇ patchµéÀÇ ¾î¶² collection 𝒞'°¡ smoothly ÁßøÇϴ ¸ðµç patchµé°ú °áÇÕÇؼ­  
         Áï½Ã 𝐌 »óÀÇ differentiable structure·Î È®ÀåµÉ ¼ö ÀÖ´Ù¸é, 𝒞'´Â ±× differentiable structure¸¦ generate ßæà÷ÇÑ´Ù°í ÇÕ´Ï´Ù.  
     ∘   ÇÑ admissible patch 𝐗©ö:𝐃©ö ¡æ 𝐌°¡ 𝐏ÀÇ local coordinates ÏÑò¢ ñ¨øö¶ó ºÎ¸£´Â À¯ÀÏÇÑ ordered pair 𝐗©ö-1(𝐏) = (u1, u2)¿Í
          𝐗©ö(𝐃©ö)ÀÇ °¢ Á¡¿¡¼­ °áÇÕÇÕ´Ï´Ù(associate). ¸¸ÀÏ 𝐗©÷:𝐃©÷ ¡æ 𝐌°¡, 𝐗©÷(𝐃©÷)ÀÇ °¢ Á¡¿¡°Ô local coordinates (ū1, ū2)¿Í °áÇÕÇÏ´Â
         ¾î¶² µÎ¹ø° admissible patch¶ó¸é, 𝐗©ö(𝐃©ö) ¡û 𝐗©÷(𝐃©÷)ÀÇ Á¡µéÀº µÎ°³ÀÇ local coordinates pair (u1, u2)¿Í (ū1, ū2)¸¦ °®À¸¸ç,
         composite function 𝐗©÷-1∘ 𝐗©ö ¿Í 𝐗©ö-1∘ 𝐗©÷´Â ū1¿Í ū2¸¦ u1¿Í u2ÀÇ smooth functionÀ¸·Î ¸¸µé¸ç, °Å²Ù·Îµµ ¶ÇÇÑ °°½À´Ï´Ù.
         𝐗©÷-1∘ 𝐗©ö ´Â ū𝑖 =  ū𝑖 (u1, u2),  𝑖 = 1,2,  𝐗©ö-1∘ 𝐗©÷´Â u𝑖 =  u𝑖1, ū2),  𝑖 = 1,2  [9-61ab]  
         À̵éÀÌ ¹Ù·Î a change of coordinates ñ¨øöͧ ܨüµÀ» À§ÇÑ ¹æÁ¤½ÄµéÀÔ´Ï´Ù.
     ∘   ¿ì¸®´Â mapping 𝐗À̶ó ÇÏ´Â ´ë½Å °¡²û ´Ü¼øÈ÷ (u1, u2)¸¦  𝐌 ¾ÈÀÇ local coordinate systemÀ¸·Î Âü°íÇϱ⵵ ÇÒ °ÍÀÔ´Ï´Ù.    
         ¾Õ¿¡¼­ ÇØ¿Â °ÍÀ» °è¼ÓÇϱâ À§ÇØ °¡²ûÀº local coordinates (u, v)¶ó°í ºÎ¸£±âµµ ÇÒ °Ì´Ï´Ù. ¹°·Ð, Section 3¿¡¼­ ÀǹÌÇϴ 
         every  parametriized surface´Â a coordinate patchÀÌ¸ç ±× image¿¡´Ù°¡ differential structure¸¦ »ý¼ºÇÕ´Ï´Ù.   
     ∘  ¸¸ÀÏ 𝐏 ∊ 𝐗(𝐃), 𝐗(𝐃) ¡ø 𝛺ÀÎ admissible patch 𝐗:𝐃 ¡æ 𝐌ÀÌ ÀÖÀ¸¸é, 𝐌ÀÇ ÇÑ ºÎºÐÁýÇÕ 𝛺¸¦ 𝐌ÀÇ ÇÑ Á¡ 𝐏ÀÇ neighborhood  
        ÐÎÛ¨À̶ó°í ºÎ¸¨´Ï´Ù. ¸¸ÀÏ 𝐌ÀÇ ºÎºÐÁýÇÕÀÌ ±× Á¡µé °¢°¢ÀÇ ÇÑ neighborhood¶ó¸é open ¿­·ÁÀÖ´Ù°í ºÎ¸¨´Ï´Ù.

     ∘  Definition I-13
         𝛺°¡ 2-mainifold 𝐌ÀÇ ÇÑ ¿­¸° ÁýÇÕÀ̶ó°í ÇÏÀÚ. ¸¸ÀÏ function 𝑓 ∘ 𝐗°¡ 𝐌 ¾È¿¡¼­ ¸ðµç admissible patch¸¦ À§Çؼ­  
         smoothÇÏ´Ù¸é, function 𝑓:𝛺 ¡æ 𝓡µµ smoothÇÏ´Ù°í ºÎ¸£°Ô µÈ´Ù. ¸¸ÀÏ 𝑓:𝛺 ¡æ 𝓡ÀÌ smoothÇÏ°í  𝐗:𝐃 ¡æ 𝐌°¡ image°¡
         𝛺¸¦ ¸¸³ª´Â an admissible patch¶ó¸é, ¡Ó𝑓/¡Óu𝑖: 𝐗(𝐃) ¡û 𝛺 ¡æ 𝓡,  𝑖 = 1,2 ¸¦ ´ÙÀ½°ú °°ÀÌ Á¤ÀÇÇÑ´Ù.
             ¡Ó𝑓/¡Óu𝑖 ¡Õ [¡Ó(𝑓 ∘ 𝐗)/¡Óu𝑖] ∘ 𝐗-1  [9-62]
         Áï, 𝐗(𝐃) ¡û 𝛺¾ÈÀÇ °¢ Á¡¿¡ ´ëÇØ ¡Ó𝑓/¡Óu𝑖(𝐏)= [¡Ó(𝑓 ∘ 𝐗)/¡Óu𝑖] ∘ (𝐗-1(𝐏)). ÀÌ°ÍÀÌ 𝑓ÀÇ u𝑖 ¿¡ ´ëÇÑ partial derivative ÀÌ´Ù.      

     ∘  °¢ 𝑖¿¡ ´ëÇØ ¡Ó/¡Óu𝑖´Â ¹ÌºÐ product ruleÀ» ¸¸Á·ÇÔ. ¡Å ¡Ó/¡Óu𝑖(𝑓𝑔) = 𝑓(¡Ó𝑔/¡Óu𝑖) +  𝑔(¡Ó𝑓/¡Óu𝑖)  <- 𝑓, 𝑔ÀÇ domainÀÌ °°´Ù°í °¡Á¤
         𝐗©ö(𝐃©ö)¾ÈÀÇ °¢ Á¡¿¡ ´ëÇؼ­, ¡Ó/¡Óu𝑖(𝐏)[𝑓] = ¡Ó𝑓/¡Óu𝑖(𝐏)    <- 𝑓°¡ 𝐏ÀÇ ÇÑ neighborhood¿¡ Á¤ÀÇµÈ smooth function¶ó°í °¡Á¤
        ¸¸ÀÏ 𝐗©÷:𝐃©÷ ¡æ 𝐌°¡ ¶Ç´Ù¸¥ admissible patch¶ó¸é, overlap 𝐗©ö(𝐃©ö) ¡û 𝐗©÷(𝐃©÷)¿¡¼­ ´ÙÀ½ÀÇ operator Ç×µî½ÄÀ» °®½À´Ï´Ù.
            ¡Ó/¡Óu𝑖 = (¡Óū𝑗/¡Óu𝑖) ¡Ó/¡Óū𝑗,  𝑖 = 1,2  ¡Ó/¡Óūk = (¡Óu𝑖/¡Óūk) ¡Ó/¡Óu𝑖,  k = 1,2  <- from Eq. (61) [9-63ab]

     ∘  Definition I-14
         mÀÌ ¾çÀÇ Á¤¼ö¶ó ÇÏ°í 𝒪´Â EmÀÇ open ºÎºÐÁýÇÕÀ̶ó°í ÇÏÀÚ. ¸¸ÀÏ 𝐌 »óÀÇ 𝐗-1 ∘ 𝑓ÀÌ ¸ðµç admissible patch 𝐗¿¡ ´ëÇØ  
         smoothÇÏ´Ù¸é, function 𝑓:𝒪 ¡æ 𝐌µµ smoothÇÏ´Ù°í ºÎ¸¥´Ù. ¸¸ÀÏ 𝒪°¡ openÀÌ ¾Æ´Ï¶óµµ,  𝑓°¡ open domainÀ» °®´Â
         ¾à°£ÀÇ smooth functionÀÎ 𝒪¿¡°Ô¸¸ Á¦ÇÑÀ̸é, ¿ì¸®´Â 𝑓:𝒪 ¡æ 𝐌°¡ smoothÇÏ´Ù°í ºÎ¸¥´Ù. 𝐌 ¾ÈÀÇ ÇÑ curve ÍØàÊÀº  
         ÇÑ interval¿¡¼­ 𝐌À¸·ÎÀÇ ÇÑ smooth functionÀÌ´Ù. µû¶ó¼­ 𝛂:𝐼 ¡æ 𝐌ÀÌ 𝐌 ¾ÈÀÇ °î¼±À̸ç 𝐗°¡ 𝛂ÀÇ °ÍÀ» Æ÷ÇÔÇÏ´Â imageÀÇ  
         ÇÑ admissible patch¶ó¸é, ¿ì¸®´Â smooth function t¿Í (𝐗-1 ∘ 𝛂)(t) =  (u1(t), u2(t)) ȤÀº  𝛂(t) =  𝐗(u1(t), u2(t))¸¦ °®´Â´Ù.  

    ∘   ÀÌÁ¦´Â E3ÀÇ vector space stucture°¡ ¾ø±â ¶§¹®¿¡, »õ·Ó°Ô abstract surface¿¡ ´ëÇÑ tangent vector¸¦ Á¤ÀÇÇؾ߸¸ ÇÕ´Ï´Ù.  
         ÇÏÁö¸¸ E3 ¸ðµç vector´Â ÇØ´ç directional derivative operator¿Í °áÇÕÇÕ´Ï´Ù.  𝐃𝐯 =  a ¡Ó/¡Óx +  b ¡Ó/¡Óy + c ¡Ó/¡Óz.         
        ±×·¡¼­ vector¸¦ arrow°¡ ¾Æ´Ï¶ó operator·Î »ý°¢ÇÏ°í, ¸ÕÀú velocity vector¸¦ °î¼±ÀÇ directional derivative·Î Á¤ÀÇÇÕ´Ï´Ù.  

    ∘  Definition I-15
         𝛂:𝐼 ¡æ 𝐌°¡ the 2-manifold 𝐌 »óÀÇ °î¼±À̶ó°í ÇÏÀÚ. 𝛂ÀÇ 𝛂(t)¿¡¼­ÀÇ velocity vector ´Â 𝛂(t)ÀÇ ÇÑ neighborhood¿¡ Á¤ÀÇµÈ  
         ¸ðµç smooth real-valued function 𝑓¸¦ À§ÇÑ ´ÙÀ½ÀÇ operator 𝛂'(t)ÀÌ´Ù. 𝛂'(t)[𝑓] = (𝑓 ∘ 𝛂)'(t) = d/dt [𝑓(𝛂(t))]                 

    ∘  Definition I-16
         𝐏°¡ 2-manifold 𝐌 »óÀÇ ÇÑ Á¡À̶ó°í ÇÏÀÚ. ¸¸ÀÏ 𝐏¸¦ Åë°úÇϸç 𝐏¿¡¼­ velocity vector 𝐯¸¦ °®´Â 𝐌 ¾ÈÀÇ °î¼±ÀÌ Á¸ÀçÇϸé,  
         𝐌ÀÇ °¢ smooth real-valued function 𝑓¿¡ ½Ç¼ö 𝐯[𝑓]¸¦ ºÎ¿©ÇÏ´Â operator 𝐯¸¦ 𝐌 at 𝐏·ÎÀÇ tangent vector ¶ó ºÎ¸¥´Ù.  
         𝐌 at 𝐏·ÎÀÇ ¸ðµç tangent vectorÀÇ ÁýÇÕÀ» 𝐌 at 𝐏ÀÇ the tangent plane ¶ó°í ºÎ¸£¸ç, 𝐓𝐏𝐌 À̶ó°í Ç¥±âÇÑ´Ù.  

   ∘   𝛂´Â 𝐌 »ó °î¼±ÀÌ°í 𝐗:𝐃 ¡æ 𝐌´Â ¾î¶² °íÁ¤µÈ t¸¦ À§ÇÑ ÇÑ Á¡ 𝛂(t)ÀÇ neighborhoodÀÇ local coordinates (u1, u2)¸¦ Á¤ÀÇÇÏ´Â
        ÇÑ admissble patch¶ó°í ÇսôÙ. ±×·¯¸é ¾î¶² 𝐌 »óÀÇ smooth function 𝑓¸¦ À§Çؼ­ (from multivariable chain rule),  
             𝛂'(t)[𝑓] = d/dt [𝑓 ∘ 𝐗(u1(t), u2(t))] = ¡Ó(𝑓 ∘ 𝐗)/¡Óu𝑖 (𝐗-1∘ 𝛂(t)) du𝑖/dt = ¡Ó𝑓/¡Óu𝑖 (𝛂(t)) u𝑖'(t)
             µû¶ó¼­ 𝛂'(t) = u𝑖'(t) ¡Ó/¡Óu𝑖(t) ȤÀº Ãà¾àµÈ Ç¥ÇöÀ¸·Î  𝛂' = u𝑖'¡Ó/¡Óu𝑖  [9-64]
        ±×·¯¹Ç·Î ÇÑ Á¡ 𝐏 =  𝐗(u1, u2)ÀÇ ¾î¶² tangent vector 𝐯´Â ¡Ó/¡Óu1(𝐏)°ú ¡Ó/¡Óu2(𝐏)ÀÇ ¼±Çü °áÇÕÀÔ´Ï´Ù.
            𝐯 = v𝑖 ¡Ó/¡Óu𝑖(𝐏)  <- tangent vector, °è¼ö 𝐯[u𝑖] = v𝑗,  𝑗 = 1,2  (¡ñ  u𝑗/u𝑖 =  𝛿𝑗𝑖)   [9-65]
        𝐓𝐏𝐌Àº ÀÌó·³ ¡Ó/¡Óu1(𝐏)°ú ¡Ó/¡Óu2(𝐏)·Î »ý¼ºµÈ(spanned) ÇÑ vector spaceÀÔ´Ï´Ù. (µÎ vecter´Â ¼±Çü µ¶¸³ÇÏ¸ç ±âÀú°¡ µÊ.)
    ∘  µÎ°³ÀÇ local coordinates systemÀ» Àû¿ëÇϸé, tangent vector 𝐯´Â µÎ°¡Áö coordinate Ç¥Çö(representation)À» °®½À´Ï´Ù.
             𝐯 = v𝑖 ¡Ó/¡Óu𝑖(𝐏) = v̄𝑗 ¡Ó/¡Óū𝑗(𝐏)  [9-66]
             v̄𝑗 = v𝑖 ¡Óū𝑗/¡Óu𝑖(𝐏),  𝑗 = 1,2,  v𝑖 = v̄𝑗 ¡Óu𝑖/¡Óū𝑗(𝐏),  𝑖 = 1,2  <- by Eq. (66)   [9-67ab]

    ∘  Definition I-17
         𝒱°¡ 𝓡 À§·Î a vector space¶ó ÇÏÀÚ. 𝒱 »óÀÇ inner product Ò®îÝÀ̶õ 𝒱 ¾ÈÀÇ °¢ vector ½Ö 𝐯, 𝐰¿¡ ´ÙÀ½°ú °°Àº ¼Ó¼º¿¡
         µû¶ó ½Ç¼ö <𝐯, 𝐰>¸¦ ÇÒ´çÇÏ´Â ÇÑ ±ÔÄ¢(rule)ÀÌ´Ù.
         a.  <𝐯, 𝐰> = <𝐰, 𝐯> (< , >Àº symmetric ÓßöàÀÌ´Ù)         
         b.  <𝑎𝐯 + 𝑎'𝐯',𝐰> = 𝑎<𝐯, 𝐰> + 𝑎'<𝐯', 𝐰> ±×¸®°í <𝐯, 𝑎𝐰 + 𝑎'𝐰'> = 𝑎<𝐯, 𝐰> + 𝑎'<𝐯, 𝐰'> (< , >Àº bilinear ì£ñìàÊû¡ÀÌ´Ù)
         c.  <𝐯, 𝐯> ≧ 0 (𝒱 ¾ÈÀÇ ¸ðµç 𝐯¿¡ Àû¿ë), only if 𝐯 = 𝟎, <𝐯, 𝐯> = 0  (< , >Àº positive definite åÕÀÇ ïÒݬûÜÀÌ´Ù)

    ∘  Definition I-18
         2-manifold 𝐌 »óÀÇ Riamannian metric (ȤÀº metric)Àº 𝐌ÀÇ °¢ tangent plane·ÎÀÇ inner product < , >ÀÇ ÇÑ ÇÒ´çÀÌ´Ù.
         °¢ coordinate patch 𝐗:𝐃 ¡æ 𝐌¸¦ À§ÇÏ¿©, function 𝑔𝑖𝑗: 𝐗(𝐃) ¡æ 𝓡Àº ´ÙÀ½°ú °°ÀÌ Á¤ÀǵǸç, À̵éÀº smoothÇؾ߸¸ ÇÑ´Ù.
             𝑔𝑖𝑗(𝐏) = <¡Ó/¡Óu𝑖 (𝐏), ¡Ó/¡Óu𝑗 (𝐏)>,  𝑖,𝑗 = 1,2   [9-68]
         Rimannian metricÀ¸·Î ±¸ºñµÈ ÇϳªÀÇ 2-manifold¸¦ a Riamannian 2-manifold ¶ó°í ºÎ¸¥´Ù. ¸¸¾à Definition 1-17ÀÇ ¼Ó¼º
         c¸¦ ¾Æ·¡¿Í °°Àº ´õ ¾àÇÑ Á¶°Ç c'·Î ´ëÄ¡ÇÏ¸é ¾ÕÀÇ Á¤ÀǸ¦ a semi-Riamannian 2-manifold ¶ó°í ºÎ¸¥´Ù.
         c'.  ¸¸¾à 𝒱 ¾ÈÀÇ ¸ðµç 𝐰¿¡°Ô¼­ <𝐯, 𝐰> = 0 À̶ó¸é, 𝐯 = 𝟎(< , >Àº nonsigular ïáöÎÀÌ´Ù)

    ∘  Definition 1-17 (a)·ÎºÎÅÍ ¿ì¸®´Â °¢ local coordinate system 𝑔𝑖𝑗 = 𝑔𝑗𝑖 (¸ðµç 𝑖,𝑗¿¡ Àû¿ë)ÀÌ µË´Ï´Ù. 𝑔 = det (𝑔𝑖𝑗)¶ó°í Á¤ÇÕ´Ï´Ù. 
        ¸¸¾à (ū1, ū2)°¡ µÎ¹ø° local coordinate systemÀ̶ó°í Çϸé, ¿ì¸®´Â À¯»çÇÑ function 𝑔̄𝑖𝑗 = <¡Ó/¡Óū𝑖, ¡Ó/¡Óū𝑗> À» °®½À´Ï´Ù.
             𝑔̄mn =  𝑔𝑖𝑗  ¡Óu𝑖/¡Óūm  ¡Óu𝑗/¡Óūn,  m,n = 1,2   𝑔𝑖𝑗 = 𝑔̄mn ¡Óūm/¡Óu𝑖 ¡Óūn/¡Óu𝑗,  𝑖,𝑗 = 1,2   [9-69ab]
        ¸¸¾à ÁÖ¾îÁø Á¡¿¡¼­ tangent vector°¡ 𝐯 = v𝑖 ¡Ó/¡Óu𝑖 ±×¸®°í 𝐰 = w𝑗 ¡Ó/¡Óu𝑗 À̸é,  <𝐯, 𝐰> = 𝑔𝑖𝑗v𝑖w𝑗   [9-70]
        Eq. (70)ÀÇ Áº¯ÀÌ coordinateÀÇ ¼±Åÿ¡ µ¶¸³ÀûÀ̹ǷÎ, ¿ìº¯µµ ¸¶Âù°¡ÁöÀÔ´Ï´Ù. ±×·¯¹Ç·Î ´Ù¸¥ local coordinate systemÀÇ
        𝑔̄𝑖𝑗𝑖𝑗 µµ °°Àº °ª, <𝐯, 𝐰>¸¦ °®¾Æ¾ß¸¸ ÇÕ´Ï´Ù. ¹Ù²Ù¾î ¸»Çϸé, 𝑔𝑖𝑗v𝑖w𝑗 Àº an invariant ÜôܨÕáÀÔ´Ï´Ù.
    ∘   ¾î¶² tangent vector 𝐯 ¸¦ À§Çؼ­, ¡«𝐯¡«= <𝐯, 𝐯>1/2 ¶ó°í Á¤ÀÇÇÕ´Ï´Ù. ¸¸ÀÏ 𝛂 = 𝛂(t), a ¡Â t ¡Â b,°¡ 𝐌 ¾ÈÀÇ °î¼±À̶ó Çϸé,
        ¿ì¸®´Â ±× °î¼±ÀÇ ±æÀ̸¦ Section 1¿¡¼­ ó·³, ´ÙÀ½°ú °°ÀÌ Á¤ÀÇÇÕ´Ï´Ù,   𝐿 = ¡òba¡«𝛂'(t)¡«dt.
        ¸¸ÀÏ s = s(t)°¡ 𝛂(a)·ÎºÎÅÍ 𝛂(b)±îÁöÀÇ °î¼± °Å¸®¸¦ ³ªÅ¸³½´Ù¸é, 𝛂(t)ÀÇ neighborhood ¾ÈÀÇ ¾î¶² local coordinate systemÀ»
        À§Çؼ­µµ ´ÙÀ½°ú °°ÀÌ Á¤Àǵ˴ϴÙ.   (ds/dt)2 =  𝑔𝑖𝑗 du𝑖/dt du𝑗/dt   [9-71]
         Eq. (71) ¿ìÃøº¯ÀÇ invariant Ç¥Çö(ÜôܨãÒ)ÀÌ 2-manifoldÀÇ the metric ͪÕá ȤÀº fundamental form ÐñÜâû¡ãÒÀÔ´Ï´Ù.
    ∘   local coordinateÀÇ °¢ system¿¡¼­, (𝑔𝑖𝑗)¸¦ (𝑔𝑖𝑗)ÀÇ ¿ªÇà·Ä(matrix inverse), Áï, 𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑘𝑖 (𝑖,𝑘 = 1,2)¶ó°í Á¤ÀÇÇÕ´Ï´Ù. ±×·¯¸é
        ¿ì¸®´Â Eqs. (36) (37)À» Á¤ÀǷΠäÅÃÇÔÀ¸·Î½á °¢ coordinate system¿¡¼­ Christoffel symbols À» Á¤ÀÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

    ∘  Definition I-19
         ¸¸ÀÏ s°¡ È£ÀÇ ±æÀÌÀÎ 𝛂 = 𝛂(s)°¡ 𝐌 ¾ÈÀÇ °î¼±À̶ó¸é, ¶ÇÇÑ 𝛂 Æí¿¡ Á¤ÀÇµÈ °¢ local coordinate system¿¡¼­ ´ÙÀ½°ú °°À¸¸é,
         𝛂´Â a geodesic À̶ó ºÎ¸¥´Ù.   d2ur/ds2 + 𝛤r𝑖𝑗 du𝑖/ds du𝑗/ds = 0,  r = 1,2   [9-72]
         [¸¸ÀÏ Eq. (72)°¡ ÇÑ coordinate system¿¡¼­ À¯ÁöµÇ¸é, µÎ systemÀÌ ÁßøµÇ´Â °÷¿¡¼­, ´Ù¸¥ µ¥¿¡¼­µµ ¹°·Ð À¯ÁöµË´Ï´Ù!]

    ∘   Theorems 1-9°ú 1-10Àº ±× Áõ¸í¿¡ ÀÖ¾î ´ÜÁö ºÎ¼öÀûÀÎ º¯°æ¸¸À¸·Î Rimannian 2-manifolds·Î È®ÀåµË´Ï´Ù. ½ÇÁ¦·Î ³»ÀçÀûÀÎ
        ¸Å°³È­µÈ °î¸éÀ» À§ÇÑ °³³ä°ú °á°úµéµµ ÀϹÝÀû Riamannian 2-manifolds·Î È®ÀåµË´Ï´Ù. ÀÌ sectionÀÇ ¸ðµç ±âº» ¾ÆÀ̵ð¾î´Â
        ´õ °íÂ÷¿øÀ¸·Î ÀϹÝÈ­ÇÕ´Ï´Ù. ¸¸ÀÏ ¸ðµç coordinate patch 𝐗:𝐃 ¡æ 𝐌ÀÇ domain 𝐃°¡ Euclidean n-space EnÀÇ ºÎºÐÁýÇÕÀ̸é,
        Definition 1-12Àº n-manifoldÀÇ Á¤ÀÇ°¡ µË´Ï´Ù. Local coordinates´Â ±×·¯¸é n-tuples (u1, u2 ..... un)ÀÌ°í, ¶ÇÇÑ °¢ Á¡ 𝐏¿¡¼­,
        tangent "plane"Àº ÀÌÁ¦ ¡Ó/¡Óu1(𝐏), ¡Ó/¡Óu2(𝐏) ..... ¡Ó/¡Óun(𝐏)¿¡ ÀÇÇØ »ý¼ºµÈ n-dimensional tangent space ïÈÍöÊàÀÔ´Ï´Ù.    
    ∘   ¸ðµç Áö¼öµéÀÌ 1¿¡¼­ 𝑛±îÁö °ªÀ» °®°í, (𝑔𝑖𝑗)´Â 𝑛 x 𝑛 ´ëĪ Çà·ÄÀÔ´Ï´Ù. curvature tensor 𝑅h𝑖𝑗𝑘ÀÇ µ¶¸³ ¼ººÐÀº 𝑛2(𝑛2 -1)/12°³
        À̹ǷÎ, ¿¹¸¦ µé¾î 3Â÷¿ø¿¡¼­´Â 6, 4Â÷¿ø¿¡¼­´Â 20ÀÌ µË´Ï´Ù. °á°úÀûÀ¸·Î curvature¸¦ ±â¼úÇÏ·Á¸é ÇÑ function 𝐊(𝐏)º¸´Ù´Â ´õ
        ¸¹ÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¸¸ÀÏ ¾î¶² coordinate patch 𝐗:𝐃 ¡æ 𝐌¸¦ À§Çؼ­ 𝐗(𝐃) Àüü¿¡¼­ 𝑅h𝑖𝑗𝑘 = 0  (for all h,𝑖,𝑗,𝑘) ÀÌ µÈ´Ù¸é, 𝐗(𝐃)´Â
        flat øÁøÁÇÑ, Áï, ±¹ÁöÀûÀ¸·Î À¯Å¬¸®µå °ø°£°ú isometricÇÑ(ÔõËå×îÀÎ) °æ¿ìÀÔ´Ï´Ù.  

p.s.  óÀ½ Á¢ÇÑ ¹ÌºÐ±âÇÏÇÐÀ» Á¦°¡ ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï Àú¼úÇϽŠBoston College Richard Faber ±³¼ö¿¡°Ô °æÀǸ¦ Ç¥ÇÔ!
       ¿î ÁÁ°Ôµµ ÇöÀç East Tennessee States UniversityÀÇ Robert Gardner ±³¼öÀÇ 'Classnotes' (u. 7/2019)°¡ °ø°³µÇ¾î Àֳ׿ä~
       ÃÖ±Ù µ¿Ã¢ÀÎ Àç¹Ì ¼öÇÐÀÚ°¡ À̸¦ ¾Ë·ÁÁ־ Definition I-9 Áõ¸í¿¡ µµ¿òÀ» ¹Þ¾Ò´Âµ¥, ´ëÇпøÀÇ °­ÀÇ ³ëÆ®¶ó°í ÇÔ.
       (* ÀÌ Ã¥¿¡¼­´Â tensor¿¡ °ü·ÃÇؼ­´Â º»°ÝÀûÀÎ ³íÀǸ¦ ¾Ê°í ¸ðµç ÁÂÇ¥°è º¯È¯¿¡¼­ ºÒº¯ÇÏ´Ù´Â °Í¸¸ ¾ð±Þ)


Name
Spamfree

     ¿©±â¸¦ Ŭ¸¯ÇØ ÁÖ¼¼¿ä.

Password
Comment

  ´ä±Û¾²±â   ¸ñ·Ïº¸±â
¹øÈ£ Á¦               ¸ñ À̸§ ¿¬°ü ³¯Â¥ Á¶È¸
101  11/30 žç ÈæÁ¡ sunspots    ±è°ü¼® 2 2020-11-30
16:14:27
977
100    Coronado PST ÅÂ¾ç »çÁø^^    ±è°ü¼® 2 2020-11-30
16:14:27
977
99  Linde's Inflationary Cosmology [u. 1/2021]    ±è°ü¼® 1 2020-11-06
09:19:06
545
98  The Schrödinger Equation [¿Ï·á] (7) Harmonic Oscillator  ✅    ±è°ü¼® 1 2020-09-17
21:43:31
2694
97  ¿ìÁÖ·ÐÀÇ ¸íÀú WeinbergÀÇ <ÃÖÃÊÀÇ 3ºÐ>  ✅    ±è°ü¼® 3 2020-08-09
11:37:44
1362
96    ¹°¸®Çеµ¸¦ À§ÇÑ ¿ìÁַм­´Â?    ±è°ü¼® 3 2020-08-09
11:37:44
1362
95      ¿ìÁÖ·ÐÀÇ ÃÖ°í, ÃÖ½Å, °íÀü¼­..    ±è°ü¼® 3 2020-08-09
11:37:44
1362
94   Mathematical Cosmology 1. Overview  🔵    ±è°ü¼® 6 2020-06-07
16:23:00
4593
93    Mathematical Cosmology 2. FRW geometry     ±è°ü¼® 6 2020-06-07
16:23:00
4593
92      Mathematical Cosmology 3. Cosmological models I    ±è°ü¼® 6 2020-06-07
16:23:00
4593
91        Mathematical Cosmology 4. Cosmological models II    ±è°ü¼® 6 2020-06-07
16:23:00
4593
90          Mathematical Cosmology 5. Inflationary cosmology    ±è°ü¼® 6 2020-06-07
16:23:00
4593
89            Mathematical Cosmology 6. Perturbations    ±è°ü¼® 6 2020-06-07
16:23:00
4593
88  Hobson Efstathiou Lasenby GR 11a. Schwartzschild ºí·¢È¦  🔴  [2]  ±è°ü¼® 3 2020-05-13
13:44:21
17536
87    Hobson et al. GR 11b. Áß·ÂÀÇ ºØ±«, ºí·¢È¦ Çü¼º    ±è°ü¼® 3 2020-05-13
13:44:21
17536
86      Hobson et al. GR 11c. ¿úȦ, Hawking È¿°ú    ±è°ü¼® 3 2020-05-13
13:44:21
17536
85  Hobson Efstathiou Lasenby GR 19. ÀϹݻó´ë¼ºÀÇ º¯ºÐÀû Á¢±Ù    ±è°ü¼® 1 2020-04-16
07:13:39
541
84  Dirac's GR [¿Ï·á] 35. ¿ìÁÖÇ× [u. 3/2020]   🔵  [2]  ±è°ü¼® 1 2020-01-22
08:59:01
3636
83  1/20 ±º¾÷¸®ÀÇ Orion ¼º¿î^^    ±è°ü¼® 1 2020-01-20
23:28:21
433
82  º¤ÅÍ¿Í ÅÙ¼­ [¿Ï·á] 6. ÅÙ¼­ ÀÀ¿ë [u. 1/2020]    ±è°ü¼® 1 2020-01-01
19:32:21
521
81  2019³â ³ëº§¹°¸®Çлó - PeeblesÀÇ ¹°¸®Àû ¿ìÁַР  ✅    ±è°ü¼® 1 2019-10-14
19:30:49
1192
80  ÀϹݻó´ë¼º(GR) 1. µî°¡¿ø¸®; Á߷°ú °î·ü   🔵    ±è°ü¼® 5 2019-09-06
09:38:00
4316
79    ÀϹݻó´ë¼º 2. Newton Á߷·РÀç°ËÅä    ±è°ü¼® 5 2019-09-06
09:38:00
4316
78      ÀϹݻó´ë¼º 3. Ư¼ö»ó´ë¼º; ÃøÁö¼±    ±è°ü¼® 5 2019-09-06
09:38:00
4316
77        ÀϹݻó´ë¼º 4. Einstein Àå¹æÁ¤½Ä ***    ±è°ü¼® 5 2019-09-06
09:38:00
4316
76          ÀϹݻó´ë¼º 5. Schwarzschild ÇØ    ±è°ü¼® 5 2019-09-06
09:38:00
4316
75  ¹ÌºÐ±âÇÏÇÐ(DG) 1. °î¼±; Gauss °î·ü; °î¸é  🔵    ±è°ü¼® 4 2019-06-16
16:55:58
4321
74    ¹ÌºÐ±âÇÏÇÐ 2. Á¦Àϱ⺻Çü½Ä; Á¦À̱⺻Çü½Ä    ±è°ü¼® 4 2019-06-16
16:55:58
4321
73      ¹ÌºÐ±âÇÏÇÐ 3. Gauss °î·ü II; ÃøÁö¼± [u. 12/2019]  [1]  ±è°ü¼® 4 2019-06-16
16:55:58
4321
       ¹ÌºÐ±âÇÏÇÐ 4. Riemann °î·üÅÙ¼­; ´Ù¾çü    ±è°ü¼® 4 2019-06-16
16:55:58
4321
71  5/28 ±º¾÷¸®ÀÇ ÀºÇϼö^^    ±è°ü¼® 1 2019-05-30
01:20:31
799
70  ÅÙ¼­(tensor) Çؼ® I-1. Dyad¿Í ÅÙ¼­ÀÇ ¿¬»ê  🔵    ±è°ü¼® 5 2019-07-02
16:01:21
5743
69    ÅÙ¼­ Çؼ® I-2. ÅÙ¼­ ¹ÌÀûºÐ; ÁÂÇ¥º¯È¯ I    ±è°ü¼® 5 2019-07-02
16:01:21
5743
68      ÅÙ¼­ Çؼ® II-1. ÀÏ¹Ý ÁÂÇ¥°è ÅÙ¼­ÀÇ ¿¬»ê    ±è°ü¼® 5 2019-07-02
16:01:21
5743
67        ÅÙ¼­ Çؼ® II-2. ÁÂÇ¥º¯È¯ II; ÀÏ¹Ý ÁÂÇ¥°è ¹ÌºÐ    ±è°ü¼® 5 2019-07-02
16:01:21
5743
66          ÅÙ¼­ Çؼ® II-3. µ¿ÀÏ ÀûºÐ; ¹ÌºÐ±âÇÏÇÐ    ±è°ü¼® 5 2019-07-02
16:01:21
5743

    ¸ñ·Ïº¸±â   ÀÌÀüÆäÀÌÁö   ´ÙÀ½ÆäÀÌÁö     ±Û¾²±â [1] 2 [3][4]
    

Copyright 1999-2024 Zeroboard / skin by zero & Artech