±è°ü¼®
|
2019-09-04 15:20:07, Á¶È¸¼ö : 1,138 |
- Download #1 : gr_3_2p.jpg (57.9 KB), Download : 1
3. The Consequences of Einstein Theory*
EinsteinÀº Áß·ÂÀÌ ºûÀ» ÈÖ°ÔÇÑ´Ù´Â »ç½Ç°ú, ¼ö¼ºÀÇ ÐÎìíïÇ á¨ó¬ ¿îµ¿(the procession of perihelion)ÀÇ ¾çÀ» °üÂû°ª°ú ±Ù»çÇÏ°Ô
¿¹ÃøÇÏ¿´½À´Ï´Ù.(¼ö½ÄÀ¸·Î ´Ù½Ã ³ª¿È.) Ãß°¡·Î, the gravitaional redshift ñìÕô îåßä ø¶ì¹ Çö»óµµ ¿¹ÃøÇÏ¿´½À´Ï´Ù.
4. The Universal Law of Gravitation Ø¿êóìÚÕôÀÇ ÛööÎ <- Table III-1 ÂüÁ¶
∘ Johannes Kepler(1571-1630)Àº õüÀû ¿îµ¿À» ±â¼úÇϱâ À§Çؼ ¿ÀÁ÷ ¿øÀ̳ª ±¸°¡ ¾²¿©Áú ¼ö ÀÖ´Ù´Â ÇÔÁ¤¿¡¼ ¸¶Ä§³» ¹þ¾î³ ¾ÆÀ̵ð¾î·Î
Ç༺ ±ËµµÀÇ ¼¼°¡Áö ¹ýÄ¢À» ¹ß°ßÇÏ¿´°í, NewtonÀÌ ¸¸À¯ ÀηÂÀÇ ¹ýÄ¢À» ¼öÇÐÀûÀ¸·Î Ãß·ÐÇÏ´Â µ¥ Å« ¿µÇâÀ» ÁÖ¾ú½À´Ï´Ù. KeplerÀÇ ¹ýÄ¢Àº,
a. ÇϳªÀÇ Ç༺Àº žçÀÌ ÇÑ ÃÐÁ¡À¸·Î Àִ Ÿ¿ø ±Ëµµ·Î žç ÁÖÀ§¸¦ °øÀüÇÑ´Ù.
b. žçÀ¸·ÎºÎÅÍ Ç༺±îÁö ±×¸° ¹Ý°æ vector´Â ÀÏÁ¤ÇÑ ºñÀ²·Î¼ ¸éÀûÀ» ¾µ°í Áö³ª°£´Ù.(°°Àº ½Ã°£ µ¿¾È ¾µ°í Áö³ª°¡´Â ¸éÀûÀº °°´Ù.)
c. Ç༺ÀÇ ÁÖ±â´Â ±ËµµÀÇ ÀåÃà ±æÀÌÀÇ 3/2 Á¦°ö¿¡ ºñ·ÊÇÑ´Ù.
∘ Isaac Newton(1642-1727)Àº ±×ÀÇ Principia ¿¡¼ ¸¸À¯ÀηÂ(Universal Gravitation)ÀÇ ¹ýÄ¢À» °øÆ÷ÇÏ¿´½À´Ï´Ù.
¿ìÁÖ¿¡ ÀÖ´Â ¸ðµç ÀÔÀÚ´Â ±× ÈûÀÌ ¸ðµç ´Ù¸¥ ÀÔÀÚ¿ÍÀÇ »çÀÌÀÇ Á÷¼±À» µû¸£´Â ¹æÇâ°ú ±×µéÀÇ Áú·®µéÀÇ °ö¿¡ ºñ·ÊÇÏ¸ç ±×µé°£ °Å¸®ÀÇ
Á¦°ö¿¡ ¹Ýºñ·ÊÇÏ´Â Å©±â°¡ µÇ´Â ¹æ½ÄÀ¸·Î ±× ÀÔÀÚ¸¦ ²ø¾î´ç±ä´Ù.
F = GMm/r2 <- F: magnitude of force, M and m: masses, r: distance of centers, G: gravitational constant ñìÕôßÈ⦠[4-106]
Á߷»ó¼ö G´Â Àç·¡½Ä(conventional) cgs ´ÜÀ§°è(centimeter, grams, seconds)·Î´Â ¾à 6.67 X 10-8 cm3/(g sec2) ÀÔ´Ï´Ù.
∘ Áö±ÝºÎÅÍ Chapter II ¿¡¼ ±¤¼ÓÀ» ±æÀÌ(cm)·Î ȯ»êÇϵí, ¹«°Ô(g)µµ ±æÀÌ(cm)·Î ¹Ù²Ù´Â geometric units À» »ç¿ëÇÕ´Ï´Ù. [Table III-1 ÂüÁ¶]
gram to cm conversion factor : G/c2 ≈ 7.425 X 10-29 cm/g <- ±¤¼Ó c ≈ 2.9979 X 1010 cm/sec
¿¹¸¦ µé¸é ´ÞÀÇ Áú·® M¢Á = MconvG/c2 ≈ (1.99 X 1033 g)(7.425 X 10-29 cm/g) ≈ 1.48 X 105 cm <- conv: coventional unit
Fconv = GMconvmconv /r2 becomes F = Mm /r2 in geometric units .
5. Orbits in Newton's Theory <- Figure III-7 ÂüÁ¶
∘ NewtonÀÇ ¸¸À¯ÀηÂÀÇ ¹ýÄ¢À¸·Î KeplerÀÇ ¹ýÄ¢À» À¯µµÇÕ´Ï´Ù. ±¸´ëĪÀÎ ¹°Ã¼´Â Áß·ÂÀûÀ¸·Î´Â "Á¡ Áú·®"ó·³ ÀÛ¿ëÇÑ´Ù°í ÇÏ¿´À¸¹Ç·Î
𝐗(t) = (x1(t), x2(t), x3(t)): Ç༺ÀÇ À§Ä¡, r: žç°ú Ç༺ÀÇ Á߽ɰ£ °Å¸®, M and m: žç°ú Ç༺ÀÇ °¢°¢ÀÇ Áú·®ÀÌ µË´Ï´Ù.[Figure III-7]
¾ö°ÝÇϰԴ žç°ú Ç༺Àº °øÀ¯ÇÑ Áß·ÂÀÇ Áß½ÉÀÇ ÁÖÀ§¸¦ °øÀüÇÏ´Â °ÍÀÌÁö¸¸, žçÀÇ Áú·®ÀÌ Ç༺ÀÇ ¸î¹è°¡ µÇ¹Ç·Î °¡±î¿î ±Ù»ç°ªÀ¸·Î,
žçÀÌ Á÷±³ ÁÂÇ¥°èÀÇ ¿øÁ¡¿¡ °íÁ¤µÈ °ÍÀ¸·Î °£ÁÖÇÒ ¼ö ÀÖ½À´Ï´Ù.
𝐎 = 𝐗 ⨯ 𝐗" = (𝐗 ⨯ 𝐗") + (𝐗' ⨯ 𝐗') = d (𝐗 ⨯ 𝐗') /dt, 𝐀 = 𝐗 ⨯ 𝐗', 𝐗 ∙ 𝐀 = 𝐗 ∙ (𝐗 ⨯ 𝐗') = 𝐗' ∙ (𝐗 ⨯ 𝐗) = 0
∘ Ç༺Àº Á÷±³ ÁÂÇ¥°è¿¡¼ x1°ú x2ÃàÀÌ Çü¼ºÇÏ´Â Æò¸é¿¡¼ ¿òÁ÷ÀÔ´Ï´Ù. r, 𝜃 ´Â x1 = r cos 𝜃, x2 = r sin 𝜃 ÀÎ, ÇØ´çÇÏ´Â ±ØÁÂÇ¥°èÀÔ´Ï´Ù.
°¢°¢ unit vectorÀÎ radial vector 𝐮r°ú transvers vector 𝐮𝜃¸¦ 𝐮r = (cos 𝜃, sin 𝜃 ), 𝐮𝜃 = (-sin 𝜃, cos 𝜃 )·Î Á¤ÀÇÇÕ´Ï´Ù.
d𝐮r/d𝜃 = 𝐮𝜃, d𝐮𝜃/d𝜃 = - d𝐮r; ±×·¯¸é 𝐗(t) = r𝐮r,
𝐗'(t) = dr/dt 𝐮r + r d𝜃/dt 𝐮𝜃 <- by product rule [5-107]
𝐗"(t) = [d2r/dt2 - r(d𝜃/dt)2]𝐮r + [r (d2𝜃/dt2) + 2 (dr/dt)(d𝜃/dt)] 𝐮𝜃 [5-108]
r2 d𝜃/dt = h (constant) <- r (d2𝜃/dt2) + 2 (dr/dt)(d𝜃/dt) = 1/r( d/dt (r2 d𝜃/dt)) = 0 [5-109]
𝐅 = Mm/r2𝐮r, 𝐗" = - M/r2𝐮r, - M/r2= d2r/dt2 - r(d𝜃/dt)2, - (r2/h2) (d2r/d2) + 1/r) = M/r2 [5-110,111,112,113]
ÆíÀÇ»ó new variable u = 1/rÀ» µµÀÔÇÕ´Ï´Ù. du/d𝜃 = - (1/r2) (dr/d𝜃) = - (1/r2){ (dr/dt )/(d𝜃/dt)} = - (1/h) (dr/dt),
d2u/d𝜃2 = - (1/h) d/dt { (dr/dt) / (d𝜃/dt)} = - (r2/h2) (d2r/dt2)
d2u/d𝜃2 + u = M/h2 -> »ó¼ö ÇÔ¼ö u = M/h2´Â ÀÚ¸íÇÑ ÇØÁß ÇϳªÀÓ. [5-114]
d2u/d𝜃2 + u = 0 -> the general soluntion: u = k1cos 𝜃 + k2sin 𝜃.**, cos(x - y) = cos x cos y + sin x siny [5-115]
±×·¯¹Ç·Î u = (1/d) cos (𝜃 - 𝜃0) + M/h2µµ ÇϳªÀÇ ÇØ°¡ µÉ¼ö ÀÖÀ¸¸ç, ¶ÇÇÑ ¸¸ÀÏ d>0, 𝜃0 = 0 À̶ó¸é ´ÙÀ½ÀÇ ¹æÁ¤½ÄÀÌ µË´Ï´Ù.
u = M/h2 (1 + e cos 𝜃) <- e = h2/(Md), ed = r(1 + e cos 𝜃) or r = e(d - r cos 𝜃) <- if e<1, it is an ellipse [5-116,117,118]
Cartesian ÁÂÇ¥°è·Î º¯È¯Çϸé, (x + c)2/a2 + y2/b2 = 1, a= ed/(1 - e2), b = a(1- e2)1/2, c = ae [5-119]
Ÿ¿øÀÇ ¸éÀû 𝐀 = 𝜋ab = 𝜋a2(1- e2)1/2, d𝐀/dt = h/2, a: semi-major axis(±ä¹ÝÁö¸§), b: semi-minor axis(ªÀº¹ÝÁö¸§)
Ç༺ÀÇ ÁÖ±â 𝐓 = 2𝐀/h = 2𝜋a2(1- e2)1/2/h, 𝐓 = (2𝜋a2/h)(h/(Ma)1/2 = 2𝜋/M1/2 a3/2 [Kepler's Third Law: 𝐓2 ¡ð (2a)3] ▮
p.s. KeplerÀÇ ¹ýÄ¢ÀÇ Áõ¸íÀº ¿©·¯ ¹æ½ÄÀÌ Àִµ¥ ÀÏ¹Ý »ó´ë·Ð¿¡ ÀÇÇÑ ¼ö¼º ±ÙÀÏÁ¡ À̵¿¿¡ ¿¬°èÇؼ ÀÌ ¹æ½ÄÀ» ¼±ÅÃÇÑ µíÇÔ.
* ÀÏ¹Ý »ó´ë·Ð¿¡ ´ëÇÑ EddingtonÀÇ °ËÁõ ½ºÅ丮´Â ¿©·¯ Ã¥µé/ÀÎÅÍ³Ý »ó¿¡ Àß ¾Ë·ÁÁ® ÀÖÀ¸¹Ç·Î ¿©±â¼´Â »ý·«ÇÔ.
** ÀÌ ÀÌÂ÷ ¹ÌºÐ ¹æÁ¤½ÄÀ» Ç®±â À§Çؼ iPad App WolframAlpha(°Ãß!)¸¦ »ç¿ëÇßÀ½. |
|
|