|
2020-01-01 19:32:21, ȸ : 520 |
Vectors and Tensors Ϳ ټ (1) (2) (3) (4) (5)
6. Tensor applications ټ (2)
6.3 The Riemann curvature tensor ټ
∘ Ϲݻ뼺 ߿ tensor Riemann ټε, ٿ Riemann tensor Ȥ Christoffel ߰ θ Ͽ
Riemann-Christoffel tensor θϴ. tensor ߿伺 Riemann ټ ̸ Ŭ() ʿ ǰ,
ƴ "־ (the hallmark of curvature)"̶ մϴ. κ å "(parallel transport)"̳
"ȯ(cummutator)" ϴ ΰ մϴ. ""̶ vector ũ ٲ ʰ ϴ ̵ Īմϴ.
∘ ־ " Ű" ϱ ƽϴ. ǥ Ecuador Quito ϴ
vector ϱ ݴ鿡 ϸ "Ʒ" ŵϴ. ̹ ϵ ̴ ٸ ϸ
Indonesia , vector Ű ֽϴ. ̵̾, ä ο
ֽϴ. , vector ٸ , ־ ٷ ִٰ Ȯ ֽϴ.
∘ ǻ, ""̶ ̺ ǵ˴ϴ. ̺ ΰ , ù° ̺̰ ι°
Christoffel ȣk ϴ Ͻʽÿ. vector ȯ ϸ鼭 ϴ Riemann tensor
ϴ Դϴ.*
∘ Riemann ټ vector ̺ "ȯ(commutator)"κ ڿ ɴϴ. ⼭ "ȯ" ó ,
ϴ ι ̸ ŵϴ. ϳ A ϰ ٸ B Ѵٸ, ȯڴ
[AB] = AB - BA ǵ˴ϴ. Riemann ټ 쿡 ̺ ˴ϴ. װ ̺
ƹ ̰ Ƿ, ȯ ݵ մϴ. ̺п ȯ ƴ
־ Ӽ ֽϴ.
∘ ټ ϱ ؼ, 츮 vector 𝐕𝛼 𝒙𝛽 ؼ ̺ մϴ. 𝐕𝛼;𝛽 = 𝐕𝛼 /𝒙𝛽 - 𝛤𝜎𝛼𝛽𝐕𝜎. (6.21) <- 𝐕𝛼𝛽 ε ǥ
̹ 𝒙𝛾 ؼ 𝐕𝛼𝛽 ٸ ̺ մϴ. 𝐕𝛼𝛽;𝛾 = 𝐕𝛼𝛽 /𝒙𝛾 - 𝛤𝜏𝛼𝛾𝐕𝜏𝛽 - 𝛤𝜂𝛽𝛾𝐕𝛼𝜂. (6.22) Eq.(6.21) ϸ,
𝐕𝛼𝛽;𝛾 = 2𝐕𝛼 /𝒙𝛾𝒙𝛽 - (𝛤𝜎𝛼𝛽 /𝒙𝛾)𝐕𝜎 - 𝛤𝜎𝛼𝛽(𝐕𝜎 /𝒙𝛾) - 𝛤𝜏𝛼𝛾(𝐕𝜏 /𝒙𝛽 - 𝛤𝜎𝜏𝛽𝐕𝜎) - 𝛤𝜂𝛽𝛾(𝐕𝛼 /𝒙𝜂 - 𝛤𝜎𝛼𝜂𝐕𝜎). (6.23)
̴ vector 𝐕𝜎 𝒙𝛽 ܰ踦 Ŀ 𝒙𝛾 ܰ踦 ε, Ǵٽ Ųٷ մϴ..
𝐕𝛼;𝛾 = 𝐕𝛼 /𝒙𝛾 - 𝛤𝜎𝛼𝛾𝐕𝜎. (6.24); 𝐕𝛼𝛾;𝛽 = 𝐕𝛼𝛾 /𝒙𝛽 - 𝛤𝜏𝛼𝛽𝐕𝜏𝛾 - 𝛤𝜂𝛾𝛽𝐕𝛼𝜂. (6.25)
𝐕𝛼𝛾;𝛽 = 2𝐕𝛼 /𝒙𝛽𝒙𝛾 - (𝛤𝜎𝛼𝛾 /𝒙𝛽)𝐕𝜎 - 𝛤𝜎𝛼𝛾(𝐕𝜎 /𝒙𝛽) - 𝛤𝜏𝛼𝛽(𝐕𝜏 /𝒙𝛾 - 𝛤𝜎𝜏𝛾𝐕𝜎) - 𝛤𝜂𝛾𝛽(𝐕𝛼 /𝒙𝜂 - 𝛤𝜎𝛼𝜂𝐕𝜎). (6.26)
, ̺ ϸ, Christoffel ȣ Ʒ -Ī- ϸ,
𝐕𝛼𝛽;𝛾- 𝐕𝛼𝛾;𝛽= -(𝛤𝜎𝛼𝛽 /𝒙𝛾)𝐕𝜎+ (𝛤𝜎𝛼𝛾 /𝒙𝛽)𝐕𝜎+𝛤𝜏𝛼𝛾𝛤𝜎𝜏𝛽𝐕𝜎-𝛤𝜏𝛼𝛽𝛤𝜎𝜏𝛾𝐕𝜎= (𝛤𝜎𝛼𝛾 /𝒙𝛽 - 𝛤𝜎𝛼𝛽 /𝒙𝛾 +𝛤𝜏𝛼𝛾𝛤𝜎𝜏𝛽-𝛤𝜏𝛼𝛽𝛤𝜎𝜏𝛾)𝐕𝜎. (6.27)
ȣ ó մϴ. Riemann ټ: 𝐑𝜎𝛼𝛽𝛾 𝛤𝜎𝛼𝛾 /𝒙𝛽 - 𝛤𝜎𝛼𝛽 /𝒙𝛾 + 𝛤𝜏𝛼𝛾𝛤𝜎𝜏𝛽 - 𝛤𝜏𝛼𝛽𝛤𝜎𝜏𝛾. (6.28)
∘ Riemann ټ ϳ tensor "ġټ(Ricci tensor)"ε, 𝜎 𝛽 ν ֽϴ.
4 쿡, ġټ: 𝐑𝛼𝛾 𝐑𝜎𝛼𝜎𝛾 = 𝐑1𝛼1𝛾 + 𝐑2𝛼2𝛾 + 𝐑3𝛼3𝛾 + 𝐑4𝛼4𝛾. (6.30) <- 4
∘ metric tensorν Ricci tensorټ ø ٸ ϰ, ̸ "Ricci scalar" մϴ.
ġĮ: 𝐑 𝑔𝛼𝛾𝐑𝛼𝛾 = 𝐑𝛾𝛾 = 𝐑11 + 𝐑22 + 𝐑33 + 𝐑44. (6.31) <- 4
∘ , "Einstein tensor" ˷ tensor Ricci tensor Ricci scalar metric tensor ν ֽϴ.
Einstein tensor: 𝐆𝛼𝛾 𝐑𝛼𝛾 - (1/2)𝐑𝑔𝛼𝛾. (6.32) tensor Ϲݻ뼺 Ÿϴ.
∘ ħ, "Einstein (Einstein's field equation)": 𝐆𝜇𝜈 + 𝚲𝑔𝜇𝜈 = (8𝜋𝐺/𝑐4)𝐓𝜇𝜈, (6.33) <- 𝐺: ߷», 𝑐:
𝐓𝜇𝜈 "ټ(the energy-momentum tensor)"̰, 𝚲 Einstein ָ ϱ ߾
"ֻ(the cosmological constant)"Դϴ. ̰ ٷ " ð η ˷ְ, ð ̴
˷ش." Ϲݻ뼺 ù° ϴ Դϴ.
∘ Riemann ټ ϱ ؼ, ϳ ǥ ؼ غ մϴ. ◂
ds2 = 𝑎2d𝜃2 + 𝑎2sin2(𝜃)d𝜙2, 𝑔𝜃𝜃= 𝑎2, 𝑔𝜃𝜙= 𝑔𝜙𝜃= 0, 𝑔𝜙𝜙= 𝑎2sin2(𝜃). (6.34); 𝛤𝑙𝑖𝑗 = (1/2)𝑔𝑘𝑙 [𝑔𝑖𝑘 /𝑥𝑗 + 𝑔𝑗𝑘 /𝑥𝑖 - 𝑔𝑖𝑗 /𝑥𝑘] (5.23)
𝛤𝜃𝜃𝜃 = (1/2)[𝑔𝜃𝜃(𝑔𝜃𝜃 /𝜃) + 𝑔𝜙𝜃(𝑔𝜃𝜙 /𝜃) + 𝑔𝜃𝜃(𝑔𝜃𝜃 /𝜃) + 𝑔𝜙𝜃(𝑔𝜃𝜙 /𝜃) - 𝑔𝜃𝜃(𝑔𝜃𝜃 /𝜃) - 𝑔𝜙𝜃(𝑔𝜃𝜃 /𝜙)],
𝛤𝜃𝜃𝜙 = (1/2)[𝑔𝜃𝜃(𝑔𝜃𝜃 /𝜙) + 𝑔𝜙𝜃(𝑔𝜃𝜙 /𝜙) + 𝑔𝜃𝜃(𝑔𝜙𝜃 /𝜃) + 𝑔𝜙𝜃(𝑔𝜙𝜙 /𝜃) - 𝑔𝜃𝜙(𝑔𝜃𝜃 /𝜃) - 𝑔𝜙𝜃(𝑔𝜃𝜙 /𝜙)],
𝛤𝜃𝜙𝜃 = (1/2)[𝑔𝜙𝜃(𝑔𝜃𝜃 /𝜃) + 𝑔𝜙𝜃(𝑔𝜙𝜙 /𝜃) + 𝑔𝜃𝜃(𝑔𝜃𝜃 /𝜙) + 𝑔𝜙𝜃(𝑔𝜃𝜙 /𝜙) - 𝑔𝜃𝜃(𝑔𝜃𝜙 /𝜃) - 𝑔𝜙𝜃(𝑔𝜙𝜃 /𝜙)],
𝛤𝜙𝜃𝜃 = (1/2)[𝑔𝜃𝜙(𝑔𝜃𝜃 /𝜃) + 𝑔𝜙𝜙(𝑔𝜃𝜙 /𝜃) + 𝑔𝜃𝜙(𝑔𝜃𝜃 /𝜃) + 𝑔𝜙𝜙(𝑔𝜃𝜙 /𝜃) - 𝑔𝜃𝜙(𝑔𝜃𝜃 /𝜃) - 𝑔𝜙𝜙(𝑔𝜃𝜃 /𝜙)],
𝛤𝜙𝜃𝜙 = (1/2)[𝑔𝜃𝜙(𝑔𝜃𝜃 /𝜙) + 𝑔𝜙𝜙(𝑔𝜃𝜙 /𝜙) + 𝑔𝜃𝜙(𝑔𝜙𝜃 /𝜃) + 𝑔𝜙𝜙(𝑔𝜙𝜙 /𝜃) - 𝑔𝜃𝜙(𝑔𝜃𝜙 /𝜃) - 𝑔𝜙𝜙(𝑔𝜃𝜙 /𝜙)],
𝛤𝜙𝜙𝜃 = (1/2)[𝑔𝜃𝜙(𝑔𝜙𝜃 /𝜃) + 𝑔𝜙𝜙(𝑔𝜙𝜙 /𝜃) + 𝑔𝜃𝜙(𝑔𝜃𝜃 /𝜙) + 𝑔𝜙𝜙(𝑔𝜃𝜙 /𝜙) - 𝑔𝜃𝜙(𝑔𝜙𝜃 /𝜃) - 𝑔𝜙𝜙(𝑔𝜙𝜃 /𝜙)],
𝛤𝜃𝜙𝜙 = (1/2)[𝑔𝜃𝜃(𝑔𝜙𝜃 /𝜙) + 𝑔𝜙𝜃(𝑔𝜙𝜙 /𝜙) + 𝑔𝜃𝜃(𝑔𝜙𝜃 /𝜙) + 𝑔𝜙𝜃(𝑔𝜙𝜙 /𝜙) - 𝑔𝜃𝜃(𝑔𝜙𝜙 /𝜃) - 𝑔𝜙𝜃(𝑔𝜙𝜙 /𝜙)],
𝛤𝜙𝜙𝜙 = (1/2)[𝑔𝜃𝜙(𝑔𝜙𝜃 /𝜙) + 𝑔𝜙𝜙(𝑔𝜙𝜙 /𝜙) + 𝑔𝜃𝜙(𝑔𝜙𝜃 /𝜙) + 𝑔𝜙𝜙(𝑔𝜙𝜙 /𝜙) - 𝑔𝜃𝜙(𝑔𝜙𝜙 /𝜃) - 𝑔𝜙𝜙(𝑔𝜙𝜙 /𝜙)].
𝑔𝜙𝜙 /𝜃 ̿ ̺а 0 ǹǷ, Eq. (6.34) Ʈټ Ͽ 0 ƴ ͵ մϴ.
𝛤𝜙𝜃𝜙 = 𝛤𝜙𝜙𝜃 = (1/2)𝑔𝜙𝜙(𝑔𝜙𝜙 /𝜃) = (1/2){1/𝑎2sin2(𝜃)}{2𝑎2sin2(𝜃)cos(𝜃) = cos(𝜃)/sin(𝜃) = cot(𝜃)
𝛤𝜃𝜙𝜙 = (1/2)-𝑔𝜃𝜃(𝑔𝜙𝜙 /𝜃) = -(1/2)(1/𝑎2){2𝑎2sin2(𝜃)cos(𝜃) = -sin(𝜃)cos(𝜃)
ũ ȣ ټ մϴ. 𝐑𝜎𝛼𝛽𝛾 𝛤𝜎𝛼𝛾 /𝒙𝛽 - 𝛤𝜎𝛼𝛽 /𝒙𝛾 + 𝛤𝜏𝛼𝛾𝛤𝜎𝜏𝛽 - 𝛤𝜏𝛼𝛽𝛤𝜎𝜏𝛾; [ 𝜎 = 𝜃, 𝜎 = 𝜙]
𝐑𝜃𝜃𝜃𝜃=𝛤𝜃𝜃𝜃 /𝜃-𝛤𝜃𝜃𝜃 /𝜃+𝛤𝜃𝜃𝜃𝛤𝜃𝜃𝜃+𝛤𝜙𝜃𝜃𝛤𝜃𝜙𝜃-𝛤𝜃𝜃𝜃𝛤𝜃𝜃𝜃-𝛤𝜙𝜃𝜃𝛤𝜃𝜙𝜃, 𝐑𝜙𝜃𝜃𝜃=𝛤𝜙𝜃𝜃 /𝜃-𝛤𝜙𝜃𝜃 /𝜃+𝛤𝜃𝜃𝜃𝛤𝜙𝜃𝜃+𝛤𝜙𝜃𝜃𝛤𝜙𝜙𝜃-𝛤𝜃𝜃𝜃𝛤𝜙𝜃𝜃-𝛤𝜙𝜃𝜃𝛤𝜙𝜙𝜃,
𝐑𝜃𝜃𝜃𝜙=𝛤𝜃𝜃𝜙 /𝜃-𝛤𝜃𝜃𝜃 /𝜙+𝛤𝜃𝜃𝜙𝛤𝜃𝜃𝜃+𝛤𝜙𝜃𝜙𝛤𝜃𝜙𝜃-𝛤𝜃𝜃𝜃𝛤𝜃𝜃𝜙-𝛤𝜙𝜃𝜃𝛤𝜃𝜙𝜙, 𝐑𝜙𝜃𝜃𝜙=𝛤𝜙𝜃𝜙 /𝜃-𝛤𝜙𝜃𝜃 /𝜙+𝛤𝜃𝜃𝜙𝛤𝜙𝜃𝜃+𝛤𝜙𝜃𝜙𝛤𝜙𝜙𝜃-𝛤𝜃𝜃𝜃𝛤𝜙𝜃𝜙-𝛤𝜙𝜃𝜃𝛤𝜙𝜙𝜙,
𝐑𝜃𝜃𝜙𝜃=𝛤𝜃𝜃𝜃 /𝜙-𝛤𝜃𝜃𝜙 /𝜃+𝛤𝜃𝜃𝜃𝛤𝜃𝜃𝜙+𝛤𝜙𝜃𝜃𝛤𝜃𝜙𝜙-𝛤𝜃𝜃𝜙𝛤𝜃𝜃𝜃-𝛤𝜙𝜃𝜙𝛤𝜃𝜙𝜃, 𝐑𝜙𝜃𝜙𝜃=𝛤𝜙𝜃𝜃 /𝜙-𝛤𝜙𝜃𝜙 /𝜃+𝛤𝜃𝜃𝜃𝛤𝜙𝜃𝜙+𝛤𝜙𝜃𝜃𝛤𝜙𝜙𝜙-𝛤𝜃𝜃𝜙𝛤𝜙𝜃𝜃-𝛤𝜙𝜃𝜙𝛤𝜙𝜙𝜃,
𝐑𝜃𝜙𝜃𝜃=𝛤𝜃𝜙𝜃 /𝜙-𝛤𝜃𝜙𝜃 /𝜙+𝛤𝜃𝜙𝜃𝛤𝜃𝜃𝜃+𝛤𝜙𝜙𝜃𝛤𝜃𝜙𝜃-𝛤𝜃𝜙𝜃𝛤𝜃𝜃𝜃-𝛤𝜙𝜙𝜃𝛤𝜃𝜙𝜃, 𝐑𝜙𝜙𝜃𝜃=𝛤𝜙𝜙𝜃 /𝜃-𝛤𝜙𝜙𝜃 /𝜃+𝛤𝜃𝜙𝜃𝛤𝜙𝜃𝜃+𝛤𝜙𝜙𝜃𝛤𝜙𝜙𝜃-𝛤𝜃𝜙𝜃𝛤𝜙𝜃𝜃-𝛤𝜙𝜙𝜃𝛤𝜙𝜙𝜃,
𝐑𝜃𝜃𝜙𝜙=𝛤𝜃𝜃𝜙 /𝜙-𝛤𝜃𝜃𝜙 /𝜙+𝛤𝜃𝜃𝜙𝛤𝜃𝜃𝜙+𝛤𝜙𝜃𝜙𝛤𝜃𝜙𝜙-𝛤𝜃𝜃𝜙𝛤𝜃𝜃𝜙-𝛤𝜙𝜃𝜙𝛤𝜃𝜙𝜙, 𝐑𝜙𝜃𝜙𝜃=𝛤𝜙𝜃𝜙 /𝜙-𝛤𝜙𝜃𝜙 /𝜃+𝛤𝜃𝜃𝜙𝛤𝜙𝜃𝜙+𝛤𝜙𝜃𝜙𝛤𝜙𝜙𝜙-𝛤𝜃𝜙𝜃𝛤𝜙𝜃𝜙-𝛤𝜙𝜃𝜙𝛤𝜙𝜙𝜃,
𝐑𝜃𝜙𝜃𝜙=𝛤𝜃𝜙𝜙 /𝜃-𝛤𝜃𝜙𝜃 /𝜙+𝛤𝜃𝜙𝜙𝛤𝜃𝜃𝜃+𝛤𝜙𝜙𝜙𝛤𝜃𝜙𝜃-𝛤𝜃𝜙𝜃𝛤𝜃𝜃𝜙-𝛤𝜙𝜙𝜃𝛤𝜃𝜙𝜙, 𝐑𝜙𝜙𝜃𝜙=𝛤𝜙𝜙𝜙 /𝜃-𝛤𝜙𝜙𝜃 /𝜙+𝛤𝜃𝜙𝜙𝛤𝜙𝜃𝜃+𝛤𝜙𝜙𝜙𝛤𝜙𝜙𝜃-𝛤𝜃𝜙𝜃𝛤𝜙𝜃𝜙-𝛤𝜙𝜙𝜃𝛤𝜙𝜙𝜙,
𝐑𝜃𝜙𝜙𝜃=𝛤𝜃𝜙𝜃 /𝜙-𝛤𝜃𝜙𝜙 /𝜃+𝛤𝜃𝜙𝜃𝛤𝜃𝜃𝜙+𝛤𝜙𝜙𝜃𝛤𝜃𝜙𝜙-𝛤𝜃𝜙𝜙𝛤𝜃𝜃𝜃-𝛤𝜙𝜙𝜙𝛤𝜃𝜙𝜃, 𝐑𝜙𝜙𝜙𝜃=𝛤𝜙𝜙𝜃 /𝜙-𝛤𝜙𝜙𝜙 /𝜃+𝛤𝜃𝜙𝜃𝛤𝜙𝜃𝜙+𝛤𝜙𝜙𝜃𝛤𝜙𝜙𝜙-𝛤𝜃𝜙𝜙𝛤𝜙𝜃𝜃𝛤𝜙𝜙𝜙𝛤𝜙𝜙𝜃,
𝐑𝜃𝜙𝜙𝜙=𝛤𝜃𝜙𝜙 /𝜙-𝛤𝜃𝜙𝜙 /𝜙+𝛤𝜃𝜙𝜙𝛤𝜃𝜃𝜙+𝛤𝜙𝜙𝜙𝛤𝜃𝜙𝜙-𝛤𝜃𝜙𝜙𝛤𝜃𝜙𝜙-𝛤𝜙𝜙𝜙𝛤𝜃𝜙𝜙, 𝐑𝜙𝜙𝜙𝜙=𝛤𝜙𝜙𝜙 /𝜙-𝛤𝜙𝜙𝜙 /𝜙+𝛤𝜃𝜙𝜙𝛤𝜙𝜃𝜙+𝛤𝜙𝜙𝜙𝛤𝜙𝜙𝜙 - 𝛤𝜃𝜙𝜙𝛤𝜙𝜃𝜙𝛤𝜙𝜙𝜙𝛤𝜙𝜙𝜙.
0 ƴ Riemann ټ ãƼ, տ ش Christoffel ȣ մϴ.
𝐑𝜃𝜙𝜃𝜙 = 𝛤𝜃𝜙𝜙 /𝜃 - 𝛤𝜙𝜙𝜃𝛤𝜃𝜙𝜙 = [sin2(𝜃) - cos2(𝜃)] - [-cos2(𝜃)] = sin2(𝜃),
𝐑𝜃𝜙𝜙𝜃 = -𝛤𝜙𝜙𝜙𝛤𝜃𝜙𝜃 + 𝛤𝜙𝜙𝜃𝛤𝜃𝜙𝜙 = -[sin2(𝜃) - cos2(𝜃)] + [-cos2(𝜃)] = -sin2(𝜃),
𝐑𝜙𝜃𝜃𝜙 = 𝛤𝜙𝜃𝜙 /𝜃 + 𝛤𝜙𝜃𝜙𝛤𝜙𝜙𝜃 = -[1 + cot2(𝜃)] + cot2(𝜃) = -1
𝐑𝜙𝜃𝜙𝜃 = -𝛤𝜙𝜃𝜙 /𝜃 - 𝛤𝜙𝜃𝜙𝛤𝜙𝜙𝜃. = [1 + cot2(𝜃)] - cot2(𝜃) = 1 ▮
[ ؼ] Riemann curvatire tensor and Gauss curvature ټ 콺
̹ '̺б 4: Riemann ټ' (<-ٷΰ) ؼ Riemann ټ տ нߴ Richard Faber GR
(Differential Geometry & Relativity Theory) Gauss 2⺻İ Weingarten Riemann ټ
Ʈټ Ͽ 𝐑𝑚𝑖𝑗𝑘 = 𝑔𝑚h𝐑h𝑖𝑗𝑘 ϰ, Gauss 𝐊 = 𝑅1212/𝑔 [𝑔: det(𝑔𝑖𝑗] ϰ ֽϴ.
, κ Ϲݻ å åó ̺(covariant differentiation) (parallel transport) ϹǷ
Riemann ټ ü ԵǾ ִ ǥ ʴ Ϳ ָϿ մϴ.**
* 'A First Corurse in General Relativity' (Schutz 2009, Cambridge University Press) ִٴ ּ .
** Riemann ټ ؼ Ϲ GR å麸 ̺б ؼ Ƹ-- .
p.s. 'A Student's Guide to Vectors and Tensors'(Daniel A. Fleisch 2012, Cambridge University Press) Chapter 6.3 ߰. |
|
|