⺻ Ʈ ѹα ߱ Ϻ  ̱  û  ַ ѹα dz δ밣 ֻ   Ʈŷ   Ʈŷ 似Ƽ ij ƼƮ ũε ߻ ij󸶻 Ŭ ڵ AT Ʈŷ  ũ


 α  ȸ

Ϳ ټ [Ϸ] 6. ټ [u. 1/2020]
      2020-01-01 19:32:21, ȸ : 520


Vectors and Tensors Ϳ ټ  (1)  (2)  (3)  (4)  (5)

6. Tensor applications ټ (2)

     6.3 The Riemann curvature tensor ټ       
     ∘  Ϲݻ뼺 ߿ tensor Riemann ټε, ٿ Riemann tensor Ȥ Christoffel ߰ θ Ͽ
         Riemann-Christoffel tensor θϴ. tensor ߿伺 Riemann ټ ̸ Ŭ() ʿ ǰ,
          ƴ "־ (the hallmark of curvature)"̶ մϴ. κ å "(parallel transport)"̳
         "ȯ(cummutator)" ϴ ΰ մϴ. ""̶ vector ũ ٲ ʰ ϴ ̵ Īմϴ.
     ∘  ־ " Ű" ϱ ƽϴ. ǥ Ecuador Quito ϴ
         vector ϱ ݴ鿡 ϸ "Ʒ" ŵϴ. ̹ ϵ ̴ ٸ ϸ
          Indonesia , vector Ű ֽϴ. ̵̾, ä ο
          ޶ ֽϴ. , vector ٸ , ־ ٷ ִٰ Ȯ ֽϴ.    
     ∘   ǻ, ""̶ ̺ ǵ˴ϴ. ̺ ΰ , ù° ̺̰ ι°
         Christoffel ȣk ϴ Ͻʽÿ. vector ȯ ϸ鼭 ͸ ϴ Riemann tensor
         ϴ Դϴ.*  
     ∘   Riemann ټ vector ̺ "ȯ(commutator)"κ ڿ ɴϴ. ⼭ "ȯ" ó ,
         ϴ ι ̸ ŵϴ. ϳ A ϰ ٸ B Ѵٸ, ȯڴ  
         [AB] = AB - BA ǵ˴ϴ. Riemann ټ 쿡 ̺ ˴ϴ. װ ̺
         ƹ ̰ Ƿ, ȯ ݵ մϴ. ̺п ȯ ƴ
         ־ Ӽ ֽϴ.
     ∘   ټ ϱ ؼ, 츮 vector 𝐕𝛼 𝒙𝛽 ؼ ̺ մϴ. 𝐕𝛼;𝛽 = 𝐕𝛼 /𝒙𝛽 - 𝛤𝜎𝛼𝛽𝐕𝜎.  (6.21)  <- 𝐕𝛼𝛽 ε ǥ
         ̹ 𝒙𝛾 ؼ 𝐕𝛼𝛽 ٸ ̺ մϴ.  𝐕𝛼𝛽;𝛾 = 𝐕𝛼𝛽 /𝒙𝛾 - 𝛤𝜏𝛼𝛾𝐕𝜏𝛽 - 𝛤𝜂𝛽𝛾𝐕𝛼𝜂.  (6.22)   ⿡ Eq.(6.21) ϸ,
             𝐕𝛼𝛽;𝛾 = 2𝐕𝛼 /𝒙𝛾𝒙𝛽 - (𝛤𝜎𝛼𝛽 /𝒙𝛾)𝐕𝜎 - 𝛤𝜎𝛼𝛽(𝐕𝜎 /𝒙𝛾) - 𝛤𝜏𝛼𝛾(𝐕𝜏 /𝒙𝛽 - 𝛤𝜎𝜏𝛽𝐕𝜎) - 𝛤𝜂𝛽𝛾(𝐕𝛼 /𝒙𝜂 - 𝛤𝜎𝛼𝜂𝐕𝜎).  (6.23)
         ̴ vector 𝐕𝜎 𝒙𝛽 ܰ踦 Ŀ 𝒙𝛾 ܰ踦 ε, Ǵٽ Ųٷ մϴ..  
             𝐕𝛼;𝛾 = 𝐕𝛼 /𝒙𝛾 - 𝛤𝜎𝛼𝛾𝐕𝜎.   (6.24);  𝐕𝛼𝛾;𝛽 = 𝐕𝛼𝛾 /𝒙𝛽 - 𝛤𝜏𝛼𝛽𝐕𝜏𝛾 - 𝛤𝜂𝛾𝛽𝐕𝛼𝜂.  (6.25)
             𝐕𝛼𝛾;𝛽 = 2𝐕𝛼 /𝒙𝛽𝒙𝛾 - (𝛤𝜎𝛼𝛾 /𝒙𝛽)𝐕𝜎 - 𝛤𝜎𝛼𝛾(𝐕𝜎 /𝒙𝛽) - 𝛤𝜏𝛼𝛽(𝐕𝜏 /𝒙𝛾 - 𝛤𝜎𝜏𝛾𝐕𝜎) - 𝛤𝜂𝛾𝛽(𝐕𝛼 /𝒙𝜂 - 𝛤𝜎𝛼𝜂𝐕𝜎).  (6.26)
         , ̺ ϸ, Christoffel ȣ Ʒ -Ī- ϸ,
             𝐕𝛼𝛽;𝛾- 𝐕𝛼𝛾;𝛽= -(𝛤𝜎𝛼𝛽 /𝒙𝛾)𝐕𝜎+ (𝛤𝜎𝛼𝛾 /𝒙𝛽)𝐕𝜎+𝛤𝜏𝛼𝛾𝛤𝜎𝜏𝛽𝐕𝜎-𝛤𝜏𝛼𝛽𝛤𝜎𝜏𝛾𝐕𝜎= (𝛤𝜎𝛼𝛾 /𝒙𝛽 - 𝛤𝜎𝛼𝛽 /𝒙𝛾 +𝛤𝜏𝛼𝛾𝛤𝜎𝜏𝛽-𝛤𝜏𝛼𝛽𝛤𝜎𝜏𝛾)𝐕𝜎.  (6.27)
          ȣ ó մϴ. Riemann ټ:  𝐑𝜎𝛼𝛽𝛾 𝛤𝜎𝛼𝛾 /𝒙𝛽 - 𝛤𝜎𝛼𝛽 /𝒙𝛾 + 𝛤𝜏𝛼𝛾𝛤𝜎𝜏𝛽 - 𝛤𝜏𝛼𝛽𝛤𝜎𝜏𝛾.  (6.28) 
     ∘   Riemann ټ ϳ tensor "ġټ(Ricci tensor)"ε, 𝜎 𝛽 ν ֽϴ.
         ׷ 4 쿡, ġټ:  𝐑𝛼𝛾 𝐑𝜎𝛼𝜎𝛾 = 𝐑1𝛼1𝛾 + 𝐑2𝛼2𝛾 + 𝐑3𝛼3𝛾 + 𝐑4𝛼4𝛾.  (6.30)  <- 4
     ∘   metric tensorν Ricci tensorټ ø ٸ  ϰ, ̸ "Ricci scalar" մϴ.
         ġĮ:  𝐑 𝑔𝛼𝛾𝐑𝛼𝛾 = 𝐑𝛾𝛾 = 𝐑11 + 𝐑22 + 𝐑33 + 𝐑44.  (6.31)  <- 4
     ∘   , "Einstein tensor" ˷ tensor Ricci tensor Ricci scalar metric tensor ν ֽϴ.
         Einstein tensor:  𝐆𝛼𝛾 𝐑𝛼𝛾 - (1/2)𝐑𝑔𝛼𝛾.  (6.32)   tensor Ϲݻ뼺 Ÿϴ.
     ∘   ħ,  "Einstein (Einstein's field equation)": 𝐆𝜇𝜈 + 𝚲𝑔𝜇𝜈 = (8𝜋𝐺/𝑐4)𝐓𝜇𝜈,  (6.33)   <- 𝐺: ߷», 𝑐:
         ⿡ 𝐓𝜇𝜈 "ټ(the energy-momentum tensor)"̰,   𝚲 Einstein ָ ϱ ߾
         "ֻ(the cosmological constant)"Դϴ. ̰ ٷ  " ð η ˷ְ, ð ̴
          ˷ش." Ϲݻ뼺 ù° ϴ Դϴ.  
 
     ∘   Riemann ټ ϱ ؼ, ϳ ǥ ؼ غ մϴ.  ◂
             ds2 = 𝑎2d𝜃2 + 𝑎2sin2(𝜃)d𝜙2,  𝑔𝜃𝜃= 𝑎2,  𝑔𝜃𝜙= 𝑔𝜙𝜃= 0,  𝑔𝜙𝜙= 𝑎2sin2(𝜃).  (6.34);   𝛤𝑙𝑖𝑗 = (1/2)𝑔𝑘𝑙 [𝑔𝑖𝑘 /𝑥𝑗 + 𝑔𝑗𝑘 /𝑥𝑖 - 𝑔𝑖𝑗 /𝑥𝑘]   (5.23)
             𝛤𝜃𝜃𝜃 = (1/2)[𝑔𝜃𝜃(𝑔𝜃𝜃 /𝜃) + 𝑔𝜙𝜃(𝑔𝜃𝜙 /𝜃) + 𝑔𝜃𝜃(𝑔𝜃𝜃 /𝜃) + 𝑔𝜙𝜃(𝑔𝜃𝜙 /𝜃) - 𝑔𝜃𝜃(𝑔𝜃𝜃 /𝜃) - 𝑔𝜙𝜃(𝑔𝜃𝜃 /𝜙)],
             𝛤𝜃𝜃𝜙 = (1/2)[𝑔𝜃𝜃(𝑔𝜃𝜃 /𝜙) + 𝑔𝜙𝜃(𝑔𝜃𝜙 /𝜙) + 𝑔𝜃𝜃(𝑔𝜙𝜃 /𝜃) + 𝑔𝜙𝜃(𝑔𝜙𝜙 /𝜃) - 𝑔𝜃𝜙(𝑔𝜃𝜃 /𝜃) - 𝑔𝜙𝜃(𝑔𝜃𝜙 /𝜙)],
             𝛤𝜃𝜙𝜃 = (1/2)[𝑔𝜙𝜃(𝑔𝜃𝜃 /𝜃) + 𝑔𝜙𝜃(𝑔𝜙𝜙 /𝜃) + 𝑔𝜃𝜃(𝑔𝜃𝜃 /𝜙) + 𝑔𝜙𝜃(𝑔𝜃𝜙 /𝜙) - 𝑔𝜃𝜃(𝑔𝜃𝜙 /𝜃) - 𝑔𝜙𝜃(𝑔𝜙𝜃 /𝜙)],
             𝛤𝜙𝜃𝜃 = (1/2)[𝑔𝜃𝜙(𝑔𝜃𝜃 /𝜃) + 𝑔𝜙𝜙(𝑔𝜃𝜙 /𝜃) + 𝑔𝜃𝜙(𝑔𝜃𝜃 /𝜃) + 𝑔𝜙𝜙(𝑔𝜃𝜙 /𝜃) - 𝑔𝜃𝜙(𝑔𝜃𝜃 /𝜃) - 𝑔𝜙𝜙(𝑔𝜃𝜃 /𝜙)],
             𝛤𝜙𝜃𝜙 = (1/2)[𝑔𝜃𝜙(𝑔𝜃𝜃 /𝜙) + 𝑔𝜙𝜙(𝑔𝜃𝜙 /𝜙) + 𝑔𝜃𝜙(𝑔𝜙𝜃 /𝜃) + 𝑔𝜙𝜙(𝑔𝜙𝜙 /𝜃) - 𝑔𝜃𝜙(𝑔𝜃𝜙 /𝜃) - 𝑔𝜙𝜙(𝑔𝜃𝜙 /𝜙)],
             𝛤𝜙𝜙𝜃 = (1/2)[𝑔𝜃𝜙(𝑔𝜙𝜃 /𝜃) + 𝑔𝜙𝜙(𝑔𝜙𝜙 /𝜃) + 𝑔𝜃𝜙(𝑔𝜃𝜃 /𝜙) + 𝑔𝜙𝜙(𝑔𝜃𝜙 /𝜙) - 𝑔𝜃𝜙(𝑔𝜙𝜃 /𝜃) - 𝑔𝜙𝜙(𝑔𝜙𝜃 /𝜙)],
             𝛤𝜃𝜙𝜙 = (1/2)[𝑔𝜃𝜃(𝑔𝜙𝜃 /𝜙) + 𝑔𝜙𝜃(𝑔𝜙𝜙 /𝜙) + 𝑔𝜃𝜃(𝑔𝜙𝜃 /𝜙) + 𝑔𝜙𝜃(𝑔𝜙𝜙 /𝜙) - 𝑔𝜃𝜃(𝑔𝜙𝜙 /𝜃) - 𝑔𝜙𝜃(𝑔𝜙𝜙 /𝜙)],
             𝛤𝜙𝜙𝜙 = (1/2)[𝑔𝜃𝜙(𝑔𝜙𝜃 /𝜙) + 𝑔𝜙𝜙(𝑔𝜙𝜙 /𝜙) + 𝑔𝜃𝜙(𝑔𝜙𝜃 /𝜙) + 𝑔𝜙𝜙(𝑔𝜙𝜙 /𝜙) - 𝑔𝜃𝜙(𝑔𝜙𝜙 /𝜃) - 𝑔𝜙𝜙(𝑔𝜙𝜙 /𝜙)].
           𝑔𝜙𝜙 /𝜃 ̿ ̺а 0 ǹǷ, Eq. (6.34) Ʈټ Ͽ 0 ƴ ͵ մϴ.
             𝛤𝜙𝜃𝜙 = 𝛤𝜙𝜙𝜃 = (1/2)𝑔𝜙𝜙(𝑔𝜙𝜙 /𝜃) = (1/2){1/𝑎2sin2(𝜃)}{2𝑎2sin2(𝜃)cos(𝜃) = cos(𝜃)/sin(𝜃) = cot(𝜃)
             𝛤𝜃𝜙𝜙 = (1/2)-𝑔𝜃𝜃(𝑔𝜙𝜙 /𝜃) = -(1/2)(1/𝑎2){2𝑎2sin2(𝜃)cos(𝜃) = -sin(𝜃)cos(𝜃)
         ũ ȣ ټ մϴ. 𝐑𝜎𝛼𝛽𝛾 𝛤𝜎𝛼𝛾 /𝒙𝛽 - 𝛤𝜎𝛼𝛽 /𝒙𝛾 + 𝛤𝜏𝛼𝛾𝛤𝜎𝜏𝛽 - 𝛤𝜏𝛼𝛽𝛤𝜎𝜏𝛾; [ 𝜎 = 𝜃, 𝜎 = 𝜙]
             𝐑𝜃𝜃𝜃𝜃=𝛤𝜃𝜃𝜃 /𝜃-𝛤𝜃𝜃𝜃 /𝜃+𝛤𝜃𝜃𝜃𝛤𝜃𝜃𝜃+𝛤𝜙𝜃𝜃𝛤𝜃𝜙𝜃-𝛤𝜃𝜃𝜃𝛤𝜃𝜃𝜃-𝛤𝜙𝜃𝜃𝛤𝜃𝜙𝜃,            𝐑𝜙𝜃𝜃𝜃=𝛤𝜙𝜃𝜃 /𝜃-𝛤𝜙𝜃𝜃 /𝜃+𝛤𝜃𝜃𝜃𝛤𝜙𝜃𝜃+𝛤𝜙𝜃𝜃𝛤𝜙𝜙𝜃-𝛤𝜃𝜃𝜃𝛤𝜙𝜃𝜃-𝛤𝜙𝜃𝜃𝛤𝜙𝜙𝜃,    
             𝐑𝜃𝜃𝜃𝜙=𝛤𝜃𝜃𝜙 /𝜃-𝛤𝜃𝜃𝜃 /𝜙+𝛤𝜃𝜃𝜙𝛤𝜃𝜃𝜃+𝛤𝜙𝜃𝜙𝛤𝜃𝜙𝜃-𝛤𝜃𝜃𝜃𝛤𝜃𝜃𝜙-𝛤𝜙𝜃𝜃𝛤𝜃𝜙𝜙,        𝐑𝜙𝜃𝜃𝜙=𝛤𝜙𝜃𝜙 /𝜃-𝛤𝜙𝜃𝜃 /𝜙+𝛤𝜃𝜃𝜙𝛤𝜙𝜃𝜃+𝛤𝜙𝜃𝜙𝛤𝜙𝜙𝜃-𝛤𝜃𝜃𝜃𝛤𝜙𝜃𝜙-𝛤𝜙𝜃𝜃𝛤𝜙𝜙𝜙,    
             𝐑𝜃𝜃𝜙𝜃=𝛤𝜃𝜃𝜃 /𝜙-𝛤𝜃𝜃𝜙 /𝜃+𝛤𝜃𝜃𝜃𝛤𝜃𝜃𝜙+𝛤𝜙𝜃𝜃𝛤𝜃𝜙𝜙-𝛤𝜃𝜃𝜙𝛤𝜃𝜃𝜃-𝛤𝜙𝜃𝜙𝛤𝜃𝜙𝜃,        𝐑𝜙𝜃𝜙𝜃=𝛤𝜙𝜃𝜃 /𝜙-𝛤𝜙𝜃𝜙 /𝜃+𝛤𝜃𝜃𝜃𝛤𝜙𝜃𝜙+𝛤𝜙𝜃𝜃𝛤𝜙𝜙𝜙-𝛤𝜃𝜃𝜙𝛤𝜙𝜃𝜃-𝛤𝜙𝜃𝜙𝛤𝜙𝜙𝜃,     
             𝐑𝜃𝜙𝜃𝜃=𝛤𝜃𝜙𝜃 /𝜙-𝛤𝜃𝜙𝜃 /𝜙+𝛤𝜃𝜙𝜃𝛤𝜃𝜃𝜃+𝛤𝜙𝜙𝜃𝛤𝜃𝜙𝜃-𝛤𝜃𝜙𝜃𝛤𝜃𝜃𝜃-𝛤𝜙𝜙𝜃𝛤𝜃𝜙𝜃,       𝐑𝜙𝜙𝜃𝜃=𝛤𝜙𝜙𝜃 /𝜃-𝛤𝜙𝜙𝜃 /𝜃+𝛤𝜃𝜙𝜃𝛤𝜙𝜃𝜃+𝛤𝜙𝜙𝜃𝛤𝜙𝜙𝜃-𝛤𝜃𝜙𝜃𝛤𝜙𝜃𝜃-𝛤𝜙𝜙𝜃𝛤𝜙𝜙𝜃,  
             𝐑𝜃𝜃𝜙𝜙=𝛤𝜃𝜃𝜙 /𝜙-𝛤𝜃𝜃𝜙 /𝜙+𝛤𝜃𝜃𝜙𝛤𝜃𝜃𝜙+𝛤𝜙𝜃𝜙𝛤𝜃𝜙𝜙-𝛤𝜃𝜃𝜙𝛤𝜃𝜃𝜙-𝛤𝜙𝜃𝜙𝛤𝜃𝜙𝜙,     𝐑𝜙𝜃𝜙𝜃=𝛤𝜙𝜃𝜙 /𝜙-𝛤𝜙𝜃𝜙 /𝜃+𝛤𝜃𝜃𝜙𝛤𝜙𝜃𝜙+𝛤𝜙𝜃𝜙𝛤𝜙𝜙𝜙-𝛤𝜃𝜙𝜃𝛤𝜙𝜃𝜙-𝛤𝜙𝜃𝜙𝛤𝜙𝜙𝜃,   
             𝐑𝜃𝜙𝜃𝜙=𝛤𝜃𝜙𝜙 /𝜃-𝛤𝜃𝜙𝜃 /𝜙+𝛤𝜃𝜙𝜙𝛤𝜃𝜃𝜃+𝛤𝜙𝜙𝜙𝛤𝜃𝜙𝜃-𝛤𝜃𝜙𝜃𝛤𝜃𝜃𝜙-𝛤𝜙𝜙𝜃𝛤𝜃𝜙𝜙,     𝐑𝜙𝜙𝜃𝜙=𝛤𝜙𝜙𝜙 /𝜃-𝛤𝜙𝜙𝜃 /𝜙+𝛤𝜃𝜙𝜙𝛤𝜙𝜃𝜃+𝛤𝜙𝜙𝜙𝛤𝜙𝜙𝜃-𝛤𝜃𝜙𝜃𝛤𝜙𝜃𝜙-𝛤𝜙𝜙𝜃𝛤𝜙𝜙𝜙,      
             𝐑𝜃𝜙𝜙𝜃=𝛤𝜃𝜙𝜃 /𝜙-𝛤𝜃𝜙𝜙 /𝜃+𝛤𝜃𝜙𝜃𝛤𝜃𝜃𝜙+𝛤𝜙𝜙𝜃𝛤𝜃𝜙𝜙-𝛤𝜃𝜙𝜙𝛤𝜃𝜃𝜃-𝛤𝜙𝜙𝜙𝛤𝜃𝜙𝜃,     𝐑𝜙𝜙𝜙𝜃=𝛤𝜙𝜙𝜃 /𝜙-𝛤𝜙𝜙𝜙 /𝜃+𝛤𝜃𝜙𝜃𝛤𝜙𝜃𝜙+𝛤𝜙𝜙𝜃𝛤𝜙𝜙𝜙-𝛤𝜃𝜙𝜙𝛤𝜙𝜃𝜃𝛤𝜙𝜙𝜙𝛤𝜙𝜙𝜃,                
             𝐑𝜃𝜙𝜙𝜙=𝛤𝜃𝜙𝜙 /𝜙-𝛤𝜃𝜙𝜙 /𝜙+𝛤𝜃𝜙𝜙𝛤𝜃𝜃𝜙+𝛤𝜙𝜙𝜙𝛤𝜃𝜙𝜙-𝛤𝜃𝜙𝜙𝛤𝜃𝜙𝜙-𝛤𝜙𝜙𝜙𝛤𝜃𝜙𝜙, 𝐑𝜙𝜙𝜙𝜙=𝛤𝜙𝜙𝜙 /𝜙-𝛤𝜙𝜙𝜙 /𝜙+𝛤𝜃𝜙𝜙𝛤𝜙𝜃𝜙+𝛤𝜙𝜙𝜙𝛤𝜙𝜙𝜙 - 𝛤𝜃𝜙𝜙𝛤𝜙𝜃𝜙𝛤𝜙𝜙𝜙𝛤𝜙𝜙𝜙.
          0 ƴ Riemann ټ ãƼ, տ ش Christoffel ȣ մϴ.  
             𝐑𝜃𝜙𝜃𝜙 = 𝛤𝜃𝜙𝜙 /𝜃 - 𝛤𝜙𝜙𝜃𝛤𝜃𝜙𝜙  =  [sin2(𝜃) - cos2(𝜃)] - [-cos2(𝜃)] =  sin2(𝜃),                  
             𝐑𝜃𝜙𝜙𝜃 = -𝛤𝜙𝜙𝜙𝛤𝜃𝜙𝜃 + 𝛤𝜙𝜙𝜃𝛤𝜃𝜙𝜙  = -[sin2(𝜃) - cos2(𝜃)] + [-cos2(𝜃)] = -sin2(𝜃),                                                                                             
             𝐑𝜙𝜃𝜃𝜙 = 𝛤𝜙𝜃𝜙 /𝜃 + 𝛤𝜙𝜃𝜙𝛤𝜙𝜙𝜃  = -[1 + cot2(𝜃)] + cot2(𝜃) = -1
             𝐑𝜙𝜃𝜙𝜃 = -𝛤𝜙𝜃𝜙 /𝜃 - 𝛤𝜙𝜃𝜙𝛤𝜙𝜙𝜃. =  [1 + cot2(𝜃)] - cot2(𝜃) =  1   ▮

          [ ؼ]  Riemann curvatire tensor and Gauss curvature ټ 콺   
             ̹ '̺б 4: Riemann ټ' (<-ٷΰ) ؼ Riemann ټ տ нߴ Richard Faber GR
             (Differential Geometry & Relativity Theory)  Gauss 2⺻İ Weingarten Riemann ټ
             Ʈټ Ͽ  𝐑𝑚𝑖𝑗𝑘 = 𝑔𝑚h𝐑h𝑖𝑗𝑘 ϰ, Gauss   𝐊 = 𝑅1212/𝑔  [𝑔: det(𝑔𝑖𝑗] ϰ ֽϴ.
             , κ Ϲݻ å åó ̺(covariant differentiation) (parallel transport) ϹǷ         
              Riemann ټ ü  ԵǾ ִ ǥ ʴ Ϳ ָϿ մϴ.**
                                                                             
*  'A First Corurse in General Relativity' (Schutz 2009, Cambridge University Press) ִٴ ּ .
** Riemann ټ ؼ Ϲ GR å麸 ̺б ؼ Ƹ-- .

p.s. 'A Student's Guide to Vectors and Tensors'(Daniel A. Fleisch 2012, Cambridge University Press) Chapter 6.3 ߰.


Name
Spamfree

     ⸦ Ŭ ּ.

Password
Comment

  ۾   Ϻ
ȣ                 ̸ ¥ ȸ
101  11/30 ¾ sunspots     2 2020-11-30
16:14:27
977
100    Coronado PST ¾ ^^     2 2020-11-30
16:14:27
977
99  Linde's Inflationary Cosmology [u. 1/2021]     1 2020-11-06
09:19:06
545
98  The Schrödinger Equation [Ϸ] (7) Harmonic Oscillator  ✅     1 2020-09-17
21:43:31
2694
97  ַ Weinberg < 3>  ✅     3 2020-08-09
11:37:44
1362
96    е ַм?     3 2020-08-09
11:37:44
1362
95      ַ ְ, ֽ, ..     3 2020-08-09
11:37:44
1362
94   Mathematical Cosmology 1. Overview  🔵     6 2020-06-07
16:23:00
4593
93    Mathematical Cosmology 2. FRW geometry      6 2020-06-07
16:23:00
4593
92      Mathematical Cosmology 3. Cosmological models I     6 2020-06-07
16:23:00
4593
91        Mathematical Cosmology 4. Cosmological models II     6 2020-06-07
16:23:00
4593
90          Mathematical Cosmology 5. Inflationary cosmology     6 2020-06-07
16:23:00
4593
89            Mathematical Cosmology 6. Perturbations     6 2020-06-07
16:23:00
4593
88  Hobson Efstathiou Lasenby GR 11a. Schwartzschild Ȧ  🔴  [2]   3 2020-05-13
13:44:21
17536
87    Hobson et al. GR 11b. ߷ ر, Ȧ     3 2020-05-13
13:44:21
17536
86      Hobson et al. GR 11c. Ȧ, Hawking ȿ     3 2020-05-13
13:44:21
17536
85  Hobson Efstathiou Lasenby GR 19. Ϲݻ뼺     1 2020-04-16
07:13:39
541
84  Dirac's GR [Ϸ] 35. [u. 3/2020]   🔵  [2]   1 2020-01-22
08:59:01
3636
83  1/20 Orion ^^     1 2020-01-20
23:28:21
433
 Ϳ ټ [Ϸ] 6. ټ [u. 1/2020]     1 2020-01-01
19:32:21
521
81  2019 뺧л - Peebles ַ   ✅     1 2019-10-14
19:30:49
1192
80  Ϲݻ뼺(GR) 1. ; ߷°   🔵     5 2019-09-06
09:38:00
4316
79    Ϲݻ뼺 2. Newton ߷·     5 2019-09-06
09:38:00
4316
78      Ϲݻ뼺 3. Ư뼺;     5 2019-09-06
09:38:00
4316
77        Ϲݻ뼺 4. Einstein ***     5 2019-09-06
09:38:00
4316
76          Ϲݻ뼺 5. Schwarzschild     5 2019-09-06
09:38:00
4316
75  ̺б(DG) 1. ; Gauss ;  🔵     4 2019-06-16
16:55:58
4320
74    ̺б 2. ϱ⺻; ̱⺻     4 2019-06-16
16:55:58
4320
73      ̺б 3. Gauss II; [u. 12/2019]  [1]   4 2019-06-16
16:55:58
4320
72        ̺б 4. Riemann ټ; پü     4 2019-06-16
16:55:58
4320
71  5/28 ϼ^^     1 2019-05-30
01:20:31
799
70  ټ(tensor) ؼ I-1. Dyad ټ  🔵     5 2019-07-02
16:01:21
5743
69    ټ ؼ I-2. ټ ; ǥȯ I     5 2019-07-02
16:01:21
5743
68      ټ ؼ II-1. Ϲ ǥ ټ     5 2019-07-02
16:01:21
5743
67        ټ ؼ II-2. ǥȯ II; Ϲ ǥ ̺     5 2019-07-02
16:01:21
5743
66          ټ ؼ II-3. ; ̺б     5 2019-07-02
16:01:21
5743

    Ϻ           ۾ [1] 2 [3][4]
    

Copyright 1999-2024 Zeroboard / skin by zero & Artech