±âº» ÆäÀÌÁö Æ÷Æ®Æú¸®¿À ´ëÇѹα¹ÀÇ ÀüÅë°ÇÃà Áß±¹°ú ÀϺ»ÀÇ ÀüÅë°ÇÃà ¼­À¯·´°ú ¹Ì±¹ÀÇ °ÇÃà ±¹¿ª û¿À°æ Çö´ë ¿ìÁÖ·Ð ´ëÇѹα¹ÀÇ »êdz°æ ¹éµÎ´ë°£ Á¾ÁÖ»êÇà ³×ÆÈ È÷¸»¶ó¾ß Æ®·¹Å· ¸ùºí¶û Áö¿ª Æ®·¹Å· ¿ä¼¼¹ÌƼ ij³â µî Ƽº£Æ® ½ÇÅ©·Îµå ¾ß»ý »ý¹° ÆÄ³ë¶ó¸¶»çÁø °¶·¯¸® Ŭ·¡½Ä ·¹ÄÚµå °¶·¯¸® AT Æ÷·³ Æ®·¹Å· Á¤º¸ ¸µÅ©


 ·Î±×ÀÎ  È¸¿ø°¡ÀÔ

Maxwell ¹æÁ¤½Ä°ú ÀüÀÚ±âÆÄÀÇ ¼Óµµ  🔵
    ±è°ü¼®  2018-06-22 00:35:54, Á¶È¸¼ö : 4,544
- Download #1 : maxwell_eq_s.jpg (92.2 KB), Download : 2



1862³â Foucault´Â ±¤¼ÓÀ» ÃøÁ¤ÇÏ¿´°í, 1865³â Maxwelldm ÀüÀÚ±âÆÄÀÇ ¼Óµµ°¡ ±¤¼Ó°ú °°À½À» ¹ß°ßÇß½À´Ï´Ù.
ÀüÀÚ±âÆÄ-±¤¼ÓÀ» ¼ö¸®¹°¸®ÇÐÀûÀ¸·Î ÀÌÇØÇÏ´Â °ÍÀÌ »ó´ë¼ºÀÌ·Ð ÀÌÇØÀÇ ¹ÙÅÁÀÌ µÇ¹Ç·Î ±× °úÁ¤À» °£°áÇÏ°Ô ¿©±â¿¡ Á¤¸®ÇØ ³õ½À´Ï´Ù
EinsteinÀÇ Áß·ÂÀå ÀÌ·ÐÀº MaxwellÀÇ ÀüÀÚ±âÀå À̷п¡¼­ Ãâ¹ßÇÏ¿´À¸¹Ç·Î ÇнÀÇÒ ¶§ ¾Æ·¡ ¼³¸íÀÌ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.


À̸¦ À§Çؼ­´Â º¤ÅÍ Dot product(³»Àû), Cross product(¿ÜÀû), Del(𝛁), Gradient(±â¿ï±â), Divergence(¹ß»ê), Curl(ȸÀü)µîÀÇ °³³äÀÌ ÇÊ¿äÇÕ´Ï´Ù.
´ÙÀ½À¸·Î ¹°¸®Çп¡¼­ MaxwellÀÇ ¹æÁ¤½ÄÀ» °¢°¢ integral form(ÀûºÐÇü)°ú differential form(¹ÌºÐÇü)À¸·Î ¸ðµÎ ÀÌÇØÇÏ¿©¾ß ÇÕ´Ï´Ù.
ºûÀÇ ÆÄµ¿¹æÁ¤½Ä¿¡ ´ëÇØ¼­ Ç®¸é ÀüÀÚ±âÆÄÀÇÀÇ ¼Óµµ°¡ »êÃâµÇ´Âµ¥ ±× °á°ú°¡ ±¤¼Ó 2.9979 *108 m/sÀÔ´Ï´Ù!

    [±âº» ¼öÇÐÀû Á¤ÀÇ/Á¤¸®]  

Dot product: 𝐚 ∙ 𝐛 = |𝐚||𝐛|cos𝜃                        <-  ∙ (dot), ´ë¼öÀû Á¤ÀÇ(a1b1+ a2b2+...+anbn)ÀÇ °á°ú
Cross product: 𝐚 ¡¿ 𝐛 = |𝐚||𝐛|sin𝜃                   <- ¡¿ (cross)
Del: 𝛁 ¡Õ 𝐢 ¡Ó/¡Óx + 𝐣 ¡Ó/¡Óy + 𝐤 ¡Ó/¡Óz                          <- 𝛁 (Nabla) [del]
Gradient: 𝛁 ¥× ¡Õ 𝐢 ¡Ó¥×/¡Óx + 𝐣 ¡Ó¥×/¡Óy + 𝐤 ¡Ó¥×/¡Óz       <- ¥× (psi)
    * The gradient indicates the rate of spacial change of the field at a point and the direction of steepest increase from that point.[vector result]
Divergence: 𝛁 ∙ 𝐀 ¡Õ ¡Ó𝐀x /¡Óx + ¡Ó𝐀y /¡Óy + ¡Ó𝐀z /¡Óz
    * The divergence indicates the tendency of the field to flow away from a point. [scalar result]
Curl: 𝛁 ¡¿ 𝐀 ¡Õ (¡Ó𝐀z /¡Óy - ¡Ó𝐀y /¡Óz) 𝐢  + (¡Ó𝐀x /¡Óz - ¡Ó𝐀z /¡Óx) 𝐣 + (¡Ó𝐀y /¡Óx - ¡Ó𝐀x /¡Óy) 𝐤
    * The curl indicates the tendency of the field to circulate around a point and the direction of axis of greatest circulation.[vector result]

   [°ü·Ã ¼öÇÐÀû Á¤¸®]

Curl of Gradient: 𝛁 ¡¿ 𝛁 ¥× = 0
Laplacian = Divergence of Gradient: 𝛁 ∙ 𝛁 ¥× = 𝛁©÷ ¥× = ¡Ó©÷¥×/¡Óx©÷ + ¡Ó©÷¥×/¡Óy©÷ + ¡Ó©÷¥×/¡Óz©÷
Curl of the curl:  𝛁 ¡¿ (𝛁 ¡¿ 𝐀) = 𝛁 (𝛁 ∙ 𝐀) - 𝛁©÷ 𝐀
The Divergence theorems 𝐀 ∙ ň da = ¡òv (𝛁 ∙ 𝐀) dV
    * The flux of a vector field through a closed surface S is equal to the integral of the divergence of that field over a volume V for which S is a boundary.
Stokes' theoremc 𝐀 ∙ d𝒍 = ¡òs (𝛁 ¡¿ 𝐀) ∙ ň da
    * The circulation of a vector field over a closed path C is equal to the integral of the normal component of the curl of that field over surface S for which C is boundary.

   [MaxwellÀÇ ¹æÁ¤½Ä(Maxwell's Equation)]  

1) Gauss's law for electrical fields: ¢±s 𝑬 ∙ ň da = q /𝜖₀  [ň: unit normal vector, 𝑬: electric field in volts V/m, q: charge, 𝜖₀: permittivity of free space(Áø°ø À¯ÀüÀ²)]
    * Electric charge produces an electric field, and the flux of that field passing through any closed surface is proportional to the total charge contained within that surface.
       applying the divergence theorem ->    𝛁 ∙ 𝑬 = 𝜌/𝜖₀  [𝜌: charge density(ÀüÇÏ ¹Ðµµ) coulombs C/m©ø]
    * The electric field produced by electric charge diverges from positive charge and converges upon negative charge. 
                          
2) Gauss's law for magnetic fields: ¢±s 𝑩 ∙ ň da = 0 [𝑩: magnetic field in tesla T]
    * The total magnetic flux passing through any closed surface is zero.
       applying the divergence theorem ->    𝛁 ∙ 𝑩 = 0
    * The divergence of the magnetic field at any point is zero.

3) Faraday's law: ¢±c 𝑬 ∙ d𝒍 = - d/dt (¡òs 𝑩 ∙ ň da) = - ¡òs (¡Ó𝑩/¡Ót) ∙ ň da  <- emf: electromotive force(À¯µµ±âÀü·Â)
    * Changing magnetic flux through a surface induces an emf in any boundary path of that surface, and a changing magnetic field induces a circulating electric field.  
       applying Stoke's theorem ->    𝛁 ¡¿ 𝑬 = - ¡Ó𝑩/¡Ót
    * A circulating electric field is produced by a magnetic field that changes with time.

4) Ampere-Maxwell law: ¢±c 𝑩 ∙ d𝒍 = 𝜇₀ [𝑱 + 𝜖₀ d/dt (¡òs 𝑬 ∙ ň da)] [𝜇₀: magnetic permittivity of free space(Áø°ø ÅõÀÚÀ²),  𝑱: electric current in amperes A] <- ¥ì(mu)
    * An electric current or a changing electric flux through a surface produce a circulating magnetic field around any path that bounds that surface.
       applying Stokes' theorem ->    𝛁 ¡¿ 𝑩 = 𝜇₀ (𝑱 + 𝜖₀ ¡Ó𝑬/¡Ót) [𝑱: current density(Àü·ù ¹Ðµµ) A/m©÷]       
    * A circulating magnetic field is produced by an electric current and by an electric field that changes with time.

   [ÆÄµ¿¹æÁ¤½Ä(The Wave Equation)°ú ÀüÀÚ±âÆÄ ¼Óµµ]    

𝛁©÷𝑨 = (1/𝑣©÷) ¡Ó©÷𝑨/¡Ót©÷                           <-  ÆÄµ¿¹æÁ¤½Ä(the wave equation),  𝑣: velocity of wave
𝛁 ¡¿ (𝛁 ¡¿ 𝑬) = 𝛁 ¡¿ (- ¡Ó𝑩/¡Ót) = - ¡Ó(𝛁 ¡¿ 𝑩)/¡Ót      <-  3) Faraday's law ¾çº¯¿¡ '𝛁 ¡¿' Àû¿ë
𝛁 ¡¿ (𝛁 ¡¿ 𝑨) = 𝛁 (𝛁 ∙ 𝑬) - 𝛁©÷𝑨                  <- applying curl of the curl
𝛁 ∙ 𝑬 = 𝜌/𝜖₀;  𝛁 ¡¿ 𝑩 = 𝜇₀ (𝑱 + 𝜖₀ ¡Ó𝑬/¡Ót)         <-  Maxwell's equation 1) 4) ¿¡¼­
𝜌 = 0,   𝑱 = 0                                <- free region ¼ÓÀ̹ǷÎ
𝛁©÷𝑬 = 𝜇₀ 𝜖₀ ¡Ó©÷𝑬/¡Ót©÷;  𝛁©÷𝑩 = 𝜇₀ 𝜖₀ ¡Ó©÷𝑩/¡Ót©÷
¡Å [𝑬/𝑩] 1/𝑣©÷ = 𝜇₀ 𝜖₀,  𝑣 = ¡î (1/𝜇₀ 𝜖₀) = ¡î 1/[(4¥ð *10-7 m kg/C©÷)(8.8541878 *10-12 C©÷ s©÷/kg m©ø)] = 2.9979 *108 m/s !

ÀÌ´Â NewtonÀÇ ¹°¸®ÇÐ ¹ýÄ¢À¸·Î´Â ¼³¸íµÇÁö ¾Ê¾ÒÀ¸¹Ç·Î Çö´ë°úÇÐ ¹ßÀü¿¡ ¸·´ëÇÑ ¿µÇâ·ÂÀ» °¡Á®¿Â »ç°ÇÀ̶ó ÇϰڽÀ´Ï´Ù.
±×°ÍÀÌ ¾Ë·ÁÁø ±¤¼Ó°ú ÀÏÄ¡ÇßÀ¸¹Ç·Î ºûµµ ÀüÀÚ±âÆÄÀÓÀ» ¾Ë°Ô µÇ¾úÀ¸¸ç, EinsteinÀÌ Æ¯¼ö»ó´ë¼º ÀÌ·ÐÀ» µµÃâÇÏ´Â °è±â°¡ µÇ¾ú½À´Ï´Ù.
±¹Á¦´ÜÀ§°è(SI)¿¡¼­´Â 1983³â 1¹ÌÅ͸¦ ºû(ÀüÀÚ±âÆÄ)ÀÌ Áø°ø¿¡¼­ 1/299,792,458Ãʰ£ ÁøÇàÇÑ °æ·ÎÀÇ ±æÀÌ·Î Á¤ÇÏ¿´½À´Ï´Ù.


* Âü°í¹®Çå: Daniel A. Fleisch A Student's Guide to Maxwell's Equation (Cambridge University Press 2008)


Name
Spamfree

     ¿©±â¸¦ Ŭ¸¯ÇØ ÁÖ¼¼¿ä.

Password
Comment

  ´ä±Û¾²±â   ¸ñ·Ïº¸±â
¹øÈ£ Á¦               ¸ñ À̸§ ¿¬°ü ³¯Â¥ Á¶È¸
90          Mathematical Cosmology 5. Inflationary cosmology    ±è°ü¼® 6 2020-06-07
16:23:00
5884
89            Mathematical Cosmology 6. Perturbations    ±è°ü¼® 6 2020-06-07
16:23:00
5884
88  Hobson Efstathiou Lasenby GR 11a. Schwartzschild ºí·¢È¦  🔴  [2]  ±è°ü¼® 3 2020-05-13
13:44:21
17806
87    Hobson et al. GR 11b. Áß·ÂÀÇ ºØ±«, ºí·¢È¦ Çü¼º    ±è°ü¼® 3 2020-05-13
13:44:21
17806
86      Hobson et al. GR 11c. ¿úȦ, Hawking È¿°ú    ±è°ü¼® 3 2020-05-13
13:44:21
17806
85  Hobson Efstathiou Lasenby GR 19. GRÀÇ º¯ºÐÀû Á¢±Ù    ±è°ü¼® 1 2020-04-16
07:13:39
576
84  Dirac's GR 35. ¿ìÁÖÇ× [u. 3/2020]   🔵  [3]  ±è°ü¼® 1 2020-01-22
08:59:01
3680
83  1/20 ±º¾÷¸®¿¡¼­ º» Orion ¼º¿î^^    ±è°ü¼® 1 2020-01-20
23:28:21
471
82  º¤ÅÍ¿Í ÅÙ¼­ 6. ÅÙ¼­ ÀÀ¿ë [u. 1/2020]    ±è°ü¼® 1 2020-01-01
19:32:21
575
81  2019³â ³ëº§¹°¸®Çлó - PeeblesÀÇ ¹°¸®Àû ¿ìÁַР  ✅    ±è°ü¼® 1 2019-10-14
19:30:49
1239
80  ÀϹݻó´ë¼º(GR) 1. µî°¡¿ø¸®; Á߷°ú °î·ü   🔵    ±è°ü¼® 5 2019-09-06
09:38:00
5125
79    ÀϹݻó´ë¼º 2. Newton Á߷·РÀç°ËÅä    ±è°ü¼® 5 2019-09-06
09:38:00
5125
78      ÀϹݻó´ë¼º 3. Ư¼ö»ó´ë¼º; ÃøÁö¼±    ±è°ü¼® 5 2019-09-06
09:38:00
5125
77        ÀϹݻó´ë¼º 4. Einstein À广Á¤½Ä ***    ±è°ü¼® 5 2019-09-06
09:38:00
5125
76          ÀϹݻó´ë¼º 5. Schwarzschild ÇØ    ±è°ü¼® 5 2019-09-06
09:38:00
5125
75  ¹ÌºÐ±âÇÏÇÐ 1. °î¼±; Gauss °î·ü; °î¸é  🔵    ±è°ü¼® 4 2019-06-16
16:55:58
5359
74    ¹ÌºÐ±âÇÏÇÐ 2. Á¦Àϱ⺻Çü½Ä; Á¦À̱⺻Çü½Ä    ±è°ü¼® 4 2019-06-16
16:55:58
5359
73      ¹ÌºÐ±âÇÏÇÐ 3. Gauss °î·ü II; ÃøÁö¼± [u. 12/2019]  [1]  ±è°ü¼® 4 2019-06-16
16:55:58
5359
72        ¹ÌºÐ±âÇÏÇÐ 4. Riemann °î·üÅÙ¼­; ´Ù¾çü    ±è°ü¼® 4 2019-06-16
16:55:58
5359
71  5/28 ±º¾÷¸®¿¡¼­ ÀºÇϼö ÃÔ¿µ^^    ±è°ü¼® 1 2019-05-30
01:20:31
850
70  ÅÙ¼­ ÇØ¼® I-1. Dyad¿Í ÅÙ¼­ÀÇ ¿¬»ê  🔵    ±è°ü¼® 5 2019-07-02
16:01:21
6028
69    ÅÙ¼­ ÇØ¼® I-2. ÅÙ¼­ ¹ÌÀûºÐ; ÁÂÇ¥º¯È¯ I    ±è°ü¼® 5 2019-07-02
16:01:21
6028
68      ÅÙ¼­ ÇØ¼® II-1. ÀÏ¹Ý ÁÂÇ¥°è ÅÙ¼­ÀÇ ¿¬»ê    ±è°ü¼® 5 2019-07-02
16:01:21
6028
67        ÅÙ¼­ ÇØ¼® II-2. ÁÂÇ¥º¯È¯ II; ÀÏ¹Ý ÁÂÇ¥°è ¹ÌºÐ    ±è°ü¼® 5 2019-07-02
16:01:21
6028
66          ÅÙ¼­ ÇØ¼® II-3. ÀÏ¹Ý ÁÂÇ¥°è ÀûºÐ; ÀÀ¿ë    ±è°ü¼® 5 2019-07-02
16:01:21
6028
65  VerlindeÀÇ 'Á߷°ú ¿ìÁÖÀÇ ¾ÏÈæ ...' (°­¿¬)    ±è°ü¼® 1 2019-02-03
21:27:44
680
64  »ó´ë¼º ÀÌ·Ð(SR/GR)ÀÇ ÇнÀ °úÁ¤    ±è°ü¼® 1 2018-07-15
15:31:25
671
63  Æ¯¼ö»ó´ë¼º(SR) I-1. °£°Ý; ½Ã°£ ÆØÃ¢  🔴    ±è°ü¼® 4 2018-07-05
06:34:56
25304
62    Ư¼ö»ó´ë¼º I-2. ·Î·»Ã÷ º¯È¯    ±è°ü¼® 4 2018-07-05
06:34:56
25304
61      Ư¼ö»ó´ë¼º ¿ªÇÐ II-1. 4-º¤ÅÍ; µ¿·ÂÇÐ [u. 3/2021]    ±è°ü¼® 4 2018-07-05
06:34:56
25304
60        Ư¼ö»ó´ë¼º ¿ªÇÐ II-2. ÃøÁö¼±; ±¤¼± µî    ±è°ü¼® 4 2018-07-05
06:34:56
25304
 Maxwell ¹æÁ¤½Ä°ú ÀüÀÚ±âÆÄÀÇ ¼Óµµ  🔵    ±è°ü¼® 1 2018-06-22
00:35:54
4545
58  »ç½Ê³â¸¸ÀÇ ¼öÇÐ ÀçÇнÀ^^   ✅  [3]  ±è°ü¼® 1 2018-04-21
18:16:20
1005
57  Çö´ë ¿ìÁÖ·Ð ÀÔ¹®¼­    ±è°ü¼® 2 2018-04-23
18:39:44
605
56    Á¦1¼¼´ëÀÇ Çö´ë ¿ìÁÖ·Ð    ±è°ü¼® 2 2018-04-23
18:39:44
605
55  ÀϹݻó´ë¼º(GR) ÀÔ¹®¼­  [1]  ±è°ü¼® 2 2018-04-23
21:51:07
984

    ¸ñ·Ïº¸±â   ÀÌÀüÆäÀÌÁö   ´ÙÀ½ÆäÀÌÁö     ±Û¾²±â [1][2] 3 [4][5]
    

Copyright 1999-2025 Zeroboard / skin by zero & Artech