±âº» ÆäÀÌÁö Æ÷Æ®Æú¸®¿À ´ëÇѹα¹ÀÇ ÀüÅë°ÇÃà Áß±¹°ú ÀϺ»ÀÇ ÀüÅë°ÇÃà ¼­À¯·´°ú ¹Ì±¹ÀÇ °ÇÃà ±¹¿ª û¿À°æ Çö´ë ¿ìÁÖ·Ð ´ëÇѹα¹ÀÇ »êdz°æ ¹éµÎ´ë°£ Á¾ÁÖ»êÇà ³×ÆÈ È÷¸»¶ó¾ß Æ®·¹Å· ¸ùºí¶û Áö¿ª Æ®·¹Å· ¿ä¼¼¹ÌƼ ij³â µî Ƽº£Æ® ½ÇÅ©·Îµå ¾ß»ý »ý¹° ÆÄ³ë¶ó¸¶»çÁø °¶·¯¸® Ŭ·¡½Ä ·¹ÄÚµå °¶·¯¸® AT Æ÷·³ Æ®·¹Å· Á¤º¸ ¸µÅ©


 ·Î±×ÀÎ  È¸¿ø°¡ÀÔ

Ư¼ö»ó´ë¼º(SR) I-1. °£°Ý; ½Ã°£ ÆØÃ¢  🔴
    ±è°ü¼®  2018-06-29 07:54:00, Á¶È¸¼ö : 1,020
- Download #1 : fig_light_cones.jpg (71.7 KB), Download : 1



Ư¼ö»ó´ë¼º ¿ø¸®(Principles of Special Relativity)

<ÀüÁ¦ ¹× ¿ë¾î>

Ư¼ö ¹×  ÀÏ¹Ý »ó´ë¼º À̷п¡ °üÇÑ ±ÛÀº Âü°í¹®ÇåÀÇ ¹Ì±¹ ´ëÇб³Àç Hartle(2003)À» ±âº»À¸·Î ÇϵÇ, Âü°í¼­ Landau-Lifshitz(1939/1980)·Î º¸¿ÏÇÏ·Á°í ÇÕ´Ï´Ù.
James Hartle(1939~)µµ ÈǸ¢ÇÑ ÇÐÀÚÀÌÁö¸¸ Lev Landau(1908-1968)´Â ·¯½Ã¾ÆÀÇ ÃµÀç °úÇÐÀڷμ­ [E. Lifshitz(1919-1985)´Â Á¦ÀÚ] ¿øÀüÀ» ±â¼úÇÑ °ÍÀÔ´Ï´Ù.
Hartle Ã¥Àº ÇкλýÀ» À§ÇÑ ±³°ú¼­·Î Ãâ¹ßÇÏ¿´À¸³ª Landau-LifshitzÀÇ Ã¥Àº Àü 10±ÇÀÇ ¿ªÇÐ(mechanics) Á¦2±ÇÀ¸·Î¼­ ´ëÇпø»ýÀ» À§ÇÑ ´õ ³ôÀº ¼öÁØÀÔ´Ï´Ù.
´ëÇÐ ¼öÁØÀÇ 'ÃÖ´ëÇÑÀÇ °£°á¼º°ú ¼öÇÐÀû ¾ö¹Ð¼º(rigor)À» ÁöÇâÇϴ ª°í Á¤È®ÇÑ »ó´ë¼ºÀÌ·Ð ÇØ¼³'À» ¸ñÇ¥·Î ÇÏ¿© ¼ö½Ã ¾÷µ¥ÀÌÆ®ÇϰڽÀ´Ï´Ù~

⦁ °è(frame): ¿©±â¼­´Â ÁÂÇ¥ ½Ã½ºÅÛ(a system of coordinate)°ú µ¿ÀǾî
⦁ ±âÁذè(reference frame): °ø°£(space)¿¡¼­ ÀÔÀÚ(particle)ÀÇ À§Ä¡¿Í ½Ã°£À» ¾Ë¸®´Â ½Ã°è(clock)¸¦ °®´Â °è(frame)
⦁ °ü¼º°è(inertial frame): ¿Ü·Â(external force)¸¦ ¹ÞÁö ¾Ê°í »ó´ëÀûÀÎ µî¼ÓÀ¸·Î(uniformly) ¿òÁ÷ÀÌ´Â ±âÁذè(reference frame)
⦁ ¸Æ½ºÀ£ÀÇ ¹ýÄ¢°ú ¸¶ÀÌÄý¼-¸ô¸®(Michelson-Morley) ½ÇÇè¿¡ µû¶ó ¸ðµç °ü¼º°è¿¡¼­ ±¤¼Ó c ≅ 2.998*1010cm/s.
⦁ ´ëºÎºÐÀÇ »ó´ë¼ºÀÌ·ÐÀÇ µµÃâÀº »ç°í ½ÇÇè(thought experiment)[Gedankenexperiment]¿¡ ÀÇÇÔ.

1. »óÈ£ÀÛ¿ëÀÇ ÀüÆÄ ¼Óµµ(Velocity of propagation of interaction)

»ó´ë¼º¿ø¸®(principle of relativity)¶õ ¸ðµç °ü¼º°è(inertial frame)¿¡¼­ ÀÚ¿¬ÀÇ ¹ýÄ¢(laws of nature)ÀÇ µ¿ÀϼºÀ¸·Î, ÀÌ´Â ½ÇÇè¿¡ ÀÇÇØ Áõ¸íµÇ¾ú½À´Ï´Ù.
±×·¯¸é °è(frame)¾È¿¡¼­ ¹°Áú ÀÔÀÚµé(material particles)ÀÇ »óÈ£ÀÛ¿ë(interaction)ÀÌ ÀÖ´Ù°í ÇßÀ» ¶§ ÀüÆÄ ¼Óµµ(velocity of progaation)´Â °ú¿¬ ¾î¶°ÇÒ±î¿ä?
°¥¸±·¹¿ÀÀÇ »ó´ë¼º ¿ø¸®(principal of relativity of Galileo)¿¡¼­´Â ¹«ÇÑ ¼Óµµ(infinite velocity)·Î ÀüÆÄµÈ´Ù°í °¡Á¤ÇÏ¿´¾úÀ¸³ª, ½ÇÁ¦ÀÇ »óÈ£ ÀÛ¿ëÀº ...
¾ÆÀν´Å¸ÀÎÀÇ »ó´ë¼º ¿ø¸®(principal of relativity of Einstein)¿¡ ÀÇÇØ ±¤¼ÓÀ¸·Î ÀüÆÄµÊÀÌ ¹àÇôÁ³½À´Ï´Ù!


¿ì¸®´Â º¸Åë »ó´ë¼ºÀ̷п¡ ÀÇÇÑ ¿ªÇÐ(mechanics)À» ´ºÅæ ¿ªÇÐ(Newtonian mechanics)°ú ´ëºñÇØ »ó´ë·ÐÀû ¿ªÇÐ(relativisic mechanics)À̶ó ºÎ¸¨´Ï´Ù.
À§ ±×¸²fig.1.°ú °°ÀÌ xyz ÁÂÇ¥°è¸¦ °¡Áø K °ü¼º°è¿Í ÀÌ¿Í xÃà ¹æÇâÀ¸·Î ÀÏÁ¤ÇÑ ¼Óµµ·Î À̵¿ÇÏ´Â x'y'z' ÁÂÇ¥°èÀÇ K¡¯ °ü¼º°è¸¦ »ý°¢ÇØ º¸±â·Î ÇսôÙ.
K¡¯ °ü¼º°èÀÇ A ÁöÁ¡¿¡¼­ ½ÅÈ£(signal)°¡ ¾çÂÊÀ¸·Î Ãâ¹ßÇß´Ù°í °¡Á¤ÇÏ¸é ¸ðµç °ü¼º°è¿¡¼­ ±¤¼ÓÀº  cÀ̹ǷΠ°°Àº °Å¸®ÀÇ B¿Í C¿¡ µ¿½Ã¿¡ µµ´ÞÇÕ´Ï´Ù.
ÇÏÁö¸¸ K °ü¼º°è¿¡ ÀÖ´Â °üÂûÀÚ(observer)¿¡°Ô´Â B´Â A¸¦ ÇâÇØ¼­ °¡°í C´Â A¿¡¼­ ¸Ö¾îÁö¹Ç·Î B¿¡ ¸ÕÀú µµ´ÞÇϰí C¿¡´Â ³ªÁß¿¡ µµ´ÞÇÏ°Ô º¸ÀÔ´Ï´Ù.
ÇÑ °ü¼º°è¿¡¼­ µ¿½ÃÀÎ »ç°ÇÀÌ »ó´ëÀû µî¼ÓÀ¸·Î ¿òÁ÷ÀÌ´Â ´Ù¸¥ °ü¼º°è¿¡¼­´Â µ¿½ÃÀÎ »ç°ÇÀÌ ¾Æ´Ï¹Ç·Î ´ºÅæÀÇ ½Ã°£ °³³äÀº Æó±âÇØ¾ß ÇÕ´Ï´Ù.
¿¹¸¦ µéÀÚ¸é žçÀÇ ÇÑ »ç°ÇÀÌ ¾ÆÀ̽´Å¸ÀÎ »ó´ë¼ºÀ̷п¡¼­´Â ±¤¼Ó °Å¸®ÀÎ ¾à 8ºÐ µÚ¿¡ ÀÛ¿ëÇÏÁö¸¸ °¥¸±·¹¿ÀÀÇ »ó´ë¼º¿¡¼­´Â Áï½Ã ÀÛ¿ëÇÑ´Ù´Â Â÷ÀÌÀÔ´Ï´Ù.
ÇÏÁö¸¸ °ü¼º°è°£ °Å¸®³ª ¼Óµµ°¡ ±¤¼Ó c¿¡ ºñ±³ÇØ Å©Áö ¾ÊÀ» ¶§¿¡´Â ½Ç¿ëÀû ±Ù»ç½ÄÀÎ ´ºÅæÀÇ ¿ªÇÐÀ» ±×´ë·Î Àû¿ëÇÒ ¼ö ÀÖ´Â °ÍÀÔ´Ï´Ù. [Landau-Lifshitz p.3]

2. °£°Ý(Intervals)

»ç°Ç(event)Àº ¹ß»ýÇÑ ½Ã°£°ú Àå¼Ò·Î ±â¼úµÇ¹Ç·Î °¡»óÀÇ 4Â÷¿ø °ø°£À» 3 °ø°£Ãà(three space axis)[x]¿Í ½Ã°£Ãà(time axis)[t]·Î ÆíÀÇ»ó ÀÚÁÖ Ç¥±âÇé´Ï´Ù.
±× ½Ã°ø°£¼Ó¿¡¼­  »ç°Ç(events)µéÀº Á¡À¸·Î Ç¥±âÇÏ¿© ¼¼°èÁ¡(world points)À̶ó°í ºÎ¸£¸ç  ±× Á¡ÀÇ ¿òÁ÷ÀÓÀ» ¼¼°è¼±(world line)À̶ó°í ºÎ¸¨´Ï´Ù.
ÀÌÁ¦ À§ ±×¸²ÀÇ K¿Í K¡¯ °ü¼º°è·Î ±¤¼Ó ºÒº¯ÀÇ ¿ø¸®(the principle of the invariance of the velosity of light)ÀÇ Àû¿ëÀ» ¼öÇÐÀûÀ¸·Î »ìÆì º¸°Ú½À´Ï´Ù.
°ü¼º°è KÀÇ ½Ã°£À» t, °ü¼º°è K¡¯ÀÇ ½Ã°£À» t¡¯¶ó ÇÏ°í »ç°ÇÀÇ °£°Ý(interval)À» ∆s¶ó°í ÇÏ¸é ´ÙÀ½ÀÇ '°£°Ý ºÒº¯(invariance of intervals) ½Ä'ÀÌ ¼º¸³ÇÕ´Ï´Ù.
 
   ½Ã°è(clock)´Â L°Å¸®ÀÇ A°Å¿ï(mirror)°ú  B°Å¿ï»çÀ̸¦ ¿Õº¹ÇÏ´Â ºû ÆÞ½º(light pulse)ÀÇ ½Ã°£ °£°Ý(time interval) : ∆t = 2L/c À» ÃøÁ¤ÇÔ.
   °ü¼º°è K¿¡¼­ ∆t = 2L/c,  ∆x = ∆y = ∆z = 0 ÀÏ ¶§, xÃà ¹æÇâ µî¼Ó V·Î À̵¿ÇÏ´Â °ü¼º°è K'ÀÇ ∆t' = (2/c) *¡î[L©÷ +( ∆x'/2)©÷],  ∆x' = V∆t',   ∆y' = ∆z' = 0
   -(c∆t')©÷ + (∆x')©÷ = - 4[L©÷ + (∆x'/2 )©÷ ] + (∆x')©÷ = -4L©÷ = -(c∆t)©÷  <-  ∆x = ∆y = ∆z = 0,  ∆y' = ∆z' = 0 ¸¦ ¾çº¯¿¡ ´õÇϰí Á¤¸®Çϸé,
   -(c∆t)©÷ + (∆x)©÷ + (∆y)©÷ + (∆z)©÷ = -(c∆t')©÷ + (∆x')©÷ + (∆y')©÷ + (∆z')©÷ = -4L©÷ <- ¸ðµç °ü¼º°èÀÇ ÇÑ ºÒº¯·®(an invariant)À» ½Äº°ÇÏ´Â ¿­¼è.
 
  (∆s)©÷ ¡Õ -(c∆t)©÷ + (∆x)©÷ + (∆y)©÷ + (∆z)©÷        <2-1a>
  ds©÷ = -c©÷dt©÷ + dx©÷ + dy©÷ + dz©÷                     <2-1b> <-  ¹ÌºÐ ¹öÀü
  
3. °íÀ¯½Ã°£(Proper Time)°ú ½Ã°£ ÆØÃ¢(Time Dilation)

  (∆s)©÷ > 0  °ø°£²Ã ºÐ¸®(spacelike seperated)
  (∆s)©÷ = 0  ³Înull ºÐ¸®(null seperated or lightlike seperated)
  (∆s)©÷ < 0  ½Ã°£²Ã ºÐ¸®(timelike seperted)


ds©÷ = -c©÷dt©÷ + dx©÷ + dy©÷ + dz©÷       <2-1c> <-  HartleÃ¥ÀÌ interval·Î »ç¿ëÇÔ. * default
ds©÷ =  c©÷dt©÷ - dx©÷ - dy©÷ - dz©÷        <2-1d>  <- Landau-LifshitzÃ¥ÀÌ interval·Î »ç¿ëÇÔ.

À§ ±×¸²Ã³·³ ³Înull ºÐ¸®µÈ Á¡µéÀÌ ±¤Ãß[ÎÃõÞ-ºû¿ø»Ô](light cone)°¡ µÇ¸ç Áú·®À» °¡Áø ¹°Ã¼´Â ±¤Ãß ³»ºÎÀÇ.½Ã°£²Ã(timelike) ¼¼°è¼±À» µû¶ó ¿òÁ÷ÀÔ´Ï´Ù.
¿©±â¼­ ½Ã°è(clock)´Â ½Ã°£²Ã °Å¸®(timelike distance)¸¦ Àç´Â µµ±¸(device)À̰í, ÀÚ(ruler)´Â °ø°£²Ã °Å¸®(spacelike distance)¸¦ Àç´Â µµ±¸ÀÔ´Ï´Ù.

½Ã°£¼º ¿µ¿ª¾ÈÀÇ °î¼±(curve)À» µû¶ó ¿òÁ÷ÀÌ´Â °Å¸®ÀÎ ¥ó´Â ½ÇÁ¦ ½Ã°£ÀÌ¸ç °íÀ¯½Ã°£(proper time)À̶ó ÁöĪÇÕ´Ï´Ù. [Hartle p.60-63]
 
 d¥ó©÷ ¡Õ - ds©÷/c©÷                             <3-1> 

±¤Ãß-ºû¿ø»Ô ³»ºÎÀÇ ½Ã°£¼º ¿µ¿ª¾ÈÀÇ ¼¼°è¼±world line »óÀÇ µÎÁ¡ A¿Í B°£ °íÀ¯½Ã°£Àº ¥óAB¸¦ À§ÀÇ µÎ ½Ä¿¡ ÀÇÇØ¼­ °è»êÇϸé...
 ¥óAB = ¡ò(trom A to B)d¥ó = ¡ò(trom A to B) ¡î {dt©÷-(dx©÷+dy©÷+dz©÷)/c©÷} =  ¡ò(trom A to B) dt ¡î {1-(dx©÷+dy©÷+dz©÷)/dt©÷c©÷} = ¡ò(trom A to B) dt ¡î (1-V©÷/c©÷)

 d¥ó = dt ¡î (1 - V©÷/c©÷)                      <3-2>   <- °íÀ¯½Ã°£ ÆØÃ¢(proper time dilation) * 'Áö¿¬'(delay?)Àº ±¸/ÀϺ»½Ä ¿À¿ª

Á¤ÁöÇÑ °ü¼º°è K¿Í V·Î ¿òÁ÷ÀÌ´Â °ü¼º°è K'¿¡ °¢°¢ ¼ÓÇÑ ½Ã°èµéclocksÀ» ÅëÇØ dt'°¡ ¹«¾ùÀ» ÀǹÌÇϴ°¡¸¦ ¾Ë¾Æº¸±â·Î ÇսôÙ. [Landau p.7-9]
°ü¼º°è K'¿¡ ÀÖ´Â ½Ã°è´Â ½Ã°£°£°Ýl dt µ¿¾È ¡î (dx©÷ + dy©÷ + dz©÷) °Å¸®¸¦ À̵¿ÇÏ¸ç ±× °ü¼º°è ³»¿¡¼­ Á¤ÁöÇØ ÀÖÀ¸¹Ç·Î dx' = dy' = dz' = 0 ÀÔ´Ï´Ù.

ds©÷ = -c©÷dt©÷ + dx©÷ + dy©÷ + dz©÷ =-c©÷dt'©÷
dt' = dt ¡î [1- (dx©÷ + dy©÷ + dz©÷ )/c©÷dt©÷],  (dx©÷ + dy©÷ + dz©÷ )/dt©÷ = V©÷

 dt' = ds/c = dt ¡î (1 - V©÷/c©÷)        <3-3>   <- °ü¼º°è K'¿¡ ¼ÓÇÑ ½Ã°èÀÇ ½Ã°£ ÆØÃ¢(time dilation)

Âü°í¹®Çå Landau, L.D & Lifshitz, E.M. The Classical Theory of Fields (fourth edition, Butterworth-Heinemann 1986/1938)
               Hartle, J.B. Gravity: An Introduction to Einstein¡¯s General Relativity (Addison-Wesley 2003)

p.s. À§ Landau-Lifshitz (1962)´Â Hartle (2003)ÀÇ Âü°í¹®Çå Áß Ã¹¹øÂ°·Î¼­ ±× ¾Æ·¡¿¡ ´ÙÀ½ÀÇ ÄÚ¸àÆ®°¡ ÀÖÀ½.
      'The 150 pages of the text devoted to general relativity give a concise introduction to the basics of the subject
       in the clear and straightfoward Landau and Lifshitz style, although few application are covered in any depth.'
       Landau, L. D.¿Í  Lifshitz, E.M.ÀÇ »ó±â Ã¥Àº 1939³â Russian ÃÊÆÇº»ÀÌ·¡ ·¯½Ã¾Æ 7ÆÇÀÌ Lifshitz¿¡ ÀÇÇØ ÃâÆÇµÇ°í,
      1951³â, 1962³â, 1971³â, 1980³â ³×¹ø ¿µ¾î ¹ø¿ªÆÇ(¿ªÀÚ´Â ¸ðµÎ M. Hamermesh)ÀÌ ³ª¿ÔÀ½.


Name
Spamfree

     ¿©±â¸¦ Ŭ¸¯ÇØ ÁÖ¼¼¿ä.

Password
Comment

  ´ä±Û¾²±â   ¸ñ·Ïº¸±â
¹øÈ£ Á¦               ¸ñ À̸§ ¿¬°ü ³¯Â¥ Á¶È¸
91        Mathematical Cosmology 4. Cosmological models II    ±è°ü¼® 6 2020-06-07
16:23:00
6055
90          Mathematical Cosmology 5. Inflationary cosmology    ±è°ü¼® 6 2020-06-07
16:23:00
6055
89            Mathematical Cosmology 6. Perturbations    ±è°ü¼® 6 2020-06-07
16:23:00
6055
88  Hobson Efstathiou Lasenby GR 11a. Schwartzschild ºí·¢È¦  🔴  [2]  ±è°ü¼® 3 2020-05-13
13:44:21
17909
87    Hobson et al. GR 11b. Áß·ÂÀÇ ºØ±«, ºí·¢È¦ Çü¼º    ±è°ü¼® 3 2020-05-13
13:44:21
17909
86      Hobson et al. GR 11c. ¿úȦ, Hawking È¿°ú    ±è°ü¼® 3 2020-05-13
13:44:21
17909
85  Hobson Efstathiou Lasenby GR 19. GRÀÇ º¯ºÐÀû Á¢±Ù    ±è°ü¼® 1 2020-04-16
07:13:39
593
84  Dirac's GR 35. ¿ìÁÖÇ× [u. 3/2020]   🔵  [3]  ±è°ü¼® 1 2020-01-22
08:59:01
3697
83  1/20 ±º¾÷¸®¿¡¼­ º» Orion ¼º¿î^^    ±è°ü¼® 1 2020-01-20
23:28:21
487
82  º¤ÅÍ¿Í ÅÙ¼­ 6. ÅÙ¼­ ÀÀ¿ë [u. 1/2020]    ±è°ü¼® 1 2020-01-01
19:32:21
594
81  2019³â ³ëº§¹°¸®Çлó - PeeblesÀÇ ¹°¸®Àû ¿ìÁַР  ✅    ±è°ü¼® 1 2019-10-14
19:30:49
1281
80  ÀϹݻó´ë¼º(GR) 1. µî°¡¿ø¸®; Á߷°ú °î·ü   🔵    ±è°ü¼® 5 2019-09-06
09:38:00
5268
79    ÀϹݻó´ë¼º 2. Newton Á߷·РÀç°ËÅä    ±è°ü¼® 5 2019-09-06
09:38:00
5268
78      ÀϹݻó´ë¼º 3. Ư¼ö»ó´ë¼º; ÃøÁö¼±    ±è°ü¼® 5 2019-09-06
09:38:00
5268
77        ÀϹݻó´ë¼º 4. Einstein À广Á¤½Ä ***    ±è°ü¼® 5 2019-09-06
09:38:00
5268
76          ÀϹݻó´ë¼º 5. Schwarzschild ÇØ    ±è°ü¼® 5 2019-09-06
09:38:00
5268
75  ¹ÌºÐ±âÇÏÇÐ 1. °î¼±; Gauss °î·ü; °î¸é  🔵    ±è°ü¼® 4 2019-06-16
16:55:58
5458
74    ¹ÌºÐ±âÇÏÇÐ 2. Á¦Àϱ⺻Çü½Ä; Á¦À̱⺻Çü½Ä    ±è°ü¼® 4 2019-06-16
16:55:58
5458
73      ¹ÌºÐ±âÇÏÇÐ 3. Gauss °î·ü II; ÃøÁö¼± [u. 12/2019]  [1]  ±è°ü¼® 4 2019-06-16
16:55:58
5458
72        ¹ÌºÐ±âÇÏÇÐ 4. Riemann °î·üÅÙ¼­; ´Ù¾çü    ±è°ü¼® 4 2019-06-16
16:55:58
5458
71  5/28 ±º¾÷¸®¿¡¼­ ÀºÇϼö ÃÔ¿µ^^    ±è°ü¼® 1 2019-05-30
01:20:31
866
70  ÅÙ¼­ ÇØ¼® I-1. Dyad¿Í ÅÙ¼­ÀÇ ¿¬»ê  🔵    ±è°ü¼® 5 2019-07-02
16:01:21
6127
69    ÅÙ¼­ ÇØ¼® I-2. ÅÙ¼­ ¹ÌÀûºÐ; ÁÂÇ¥º¯È¯ I    ±è°ü¼® 5 2019-07-02
16:01:21
6127
68      ÅÙ¼­ ÇØ¼® II-1. ÀÏ¹Ý ÁÂÇ¥°è ÅÙ¼­ÀÇ ¿¬»ê    ±è°ü¼® 5 2019-07-02
16:01:21
6127
67        ÅÙ¼­ ÇØ¼® II-2. ÁÂÇ¥º¯È¯ II; ÀÏ¹Ý ÁÂÇ¥°è ¹ÌºÐ    ±è°ü¼® 5 2019-07-02
16:01:21
6127
66          ÅÙ¼­ ÇØ¼® II-3. ÀÏ¹Ý ÁÂÇ¥°è ÀûºÐ; ÀÀ¿ë    ±è°ü¼® 5 2019-07-02
16:01:21
6127
65  VerlindeÀÇ 'Á߷°ú ¿ìÁÖÀÇ ¾ÏÈæ ...' (°­¿¬)    ±è°ü¼® 1 2019-02-03
21:27:44
704
64  »ó´ë¼º ÀÌ·Ð(SR/GR)ÀÇ ÇнÀ °úÁ¤    ±è°ü¼® 1 2018-07-15
15:31:25
689
 Æ¯¼ö»ó´ë¼º(SR) I-1. °£°Ý; ½Ã°£ ÆØÃ¢  🔴    ±è°ü¼® 4 2018-07-05
06:34:56
25393
62    Ư¼ö»ó´ë¼º I-2. ·Î·»Ã÷ º¯È¯    ±è°ü¼® 4 2018-07-05
06:34:56
25393
61      Ư¼ö»ó´ë¼º ¿ªÇÐ II-1. 4-º¤ÅÍ; µ¿·ÂÇÐ [u. 3/2021]    ±è°ü¼® 4 2018-07-05
06:34:56
25393
60        Ư¼ö»ó´ë¼º ¿ªÇÐ II-2. ÃøÁö¼±; ±¤¼± µî    ±è°ü¼® 4 2018-07-05
06:34:56
25393
59  Maxwell ¹æÁ¤½Ä°ú ÀüÀÚ±âÆÄÀÇ ¼Óµµ  🔵    ±è°ü¼® 1 2018-06-22
00:35:54
4564
58  »ç½Ê³â¸¸ÀÇ ¼öÇÐ ÀçÇнÀ^^   ✅  [3]  ±è°ü¼® 1 2018-04-21
18:16:20
1019
57  Çö´ë ¿ìÁÖ·Ð ÀÔ¹®¼­    ±è°ü¼® 2 2018-04-23
18:39:44
622
56    Á¦1¼¼´ëÀÇ Çö´ë ¿ìÁÖ·Ð    ±è°ü¼® 2 2018-04-23
18:39:44
622

    ¸ñ·Ïº¸±â   ÀÌÀüÆäÀÌÁö   ´ÙÀ½ÆäÀÌÁö     ±Û¾²±â [1][2] 3 [4][5]
    

Copyright 1999-2025 Zeroboard / skin by zero & Artech