±è°ü¼®
|
2019-09-06 09:38:00, Á¶È¸¼ö : 906 |
- Download #1 : gr_3_4p.jpg (46.4 KB), Download : 1


8. The Schwarzschild Soutions <- Figure III-8 ÂüÁ¶
Karl Schwarzschild(1873-1916)´Â 1916³â EinsteinÀÌ ÀÏ¹Ý »ó´ë¼ºÀÇ ¹ßÇ¥ ¼ö°³¿ù ¸¸¿¡ EinsteinÀÇ ¹æÁ¤½ÄÀÇ ÇØ¸¦ ±¸Çß½À´Ï´Ù.
¾Õ Àå¿¡¼ÀÇ °æ¿ìó·³ ±¸Çü ´ëĪÀ¸·Î¼ ´ëÀüµÇÁö ¾Ê°í Á¤ÀûÀÎ Áú·® ºÐÆ÷¸¦ ³ªÅ¸³»´Â °æ¿ì·Î¼ 'Schwarzschild ú°' ¶ó°í ºÎ¸¨´Ï´Ù.
∘ [´Ü°è 1] ¸ÕÀú proper time À» ±¸Çü ´ëĪ¿¡ ÀûÇÕÇÑ ±¸¸é ÁÂÇ¥°èÀÇ »ï°¢ÇÔ¼ö ¹× ÀÚ¿¬·Î±× »ó¼ö eÀÇ ÇÔ¼ö·Î º¯ÇüÇÕ´Ï´Ù.
𝑅¥ì¥í = 0, ¥ì,¥í = 0,1,2,3, d𝜏2 = dt2- dx2-dy2-dz2, x = 𝜌 sin 𝜙 cos 𝜃, y = 𝜌 sin 𝜙 sin 𝜃, z = 𝜌 cos 𝜙 [8-141,142,143]
d𝜏2 = dt2 - d𝜌2 - 𝜌2d𝜙2 - 𝜌2sin2 𝜙 d𝜃2 . <- This is still, of course, the metric of flat spacetime [8-144]
d𝜏2 = U(𝜌)dt2 - V(𝜌) d𝜌2 - W(𝜌)(𝜌2d𝜙2 + 𝜌2sin2 𝜙 d𝜃2) <- U, V, W are function of 𝜌 differ slightly from unity [8-145]
d𝜏2 = A(r)dt2 - B(r) dr2 - r2d𝜙2 - r2sin2 𝜙 d𝜃2) <- If we introduce the variable r = 𝜌 W(𝜌)1/2 [8-146]
d𝜏2 = e2mdt2 - e2n dr2 - r2d𝜙2 - r2sin2 𝜙 d𝜃2) <- finally, define m = m(r), n = n(r) by e2m = A and e2n = B [8-147]
d𝜏2 = 𝑔¥ì¥ídx¥ì dx¥í, x0 = t, x1 = r, x2 = 𝜙, x3 = 𝜃
⌈ e2m 0 0 0 ⌉
(𝑔¥ì¥í) = ¦ 0 - e2n 0 0 ¦ and determinant 𝑔 = - e2m+2n r4 sin2 𝜙 [8-148]
¦ 0 0 - r2 0 ¦
⌊ 0 0 0 - r2sin2 𝜙 ⌋
∘ [´Ü°è 2] ÀÏ¹Ý »ó´ë¼º metric °è¼ö°¡ Æ÷ÇÔµÈ Christoffel ±âÈ£¸¦ »êÃâÇÑ ÈÄ, Einstein ¹æÁ¤½ÄÀÇ Ricci tensor 𝑅¥ì¥í = 0 ÇØ¸¦ ±¸ÇÕ´Ï´Ù.
Since our coordinate system is orthogonal, 𝑔¥ì¥í = 0 for ¥ì ¡Á ¥í, 𝑔¥ì¥í = 0 for ¥ì ¡Á ¥í, 𝑔¥ì¥ì = 1/𝑔¥ì¥ì for all ¥ì, in Eq. (126) then reduced to
𝛤𝜆¥ì¥í = (1/2)𝑔𝜆𝜆(¡Ó 𝑔¥ì𝜆/¡Óx¥í + ¡Ó 𝑔¥ì𝜆/¡Óx¥ì - ¡Ó 𝑔¥ì¥í/¡Óx𝜆) (no sum) [8-149]
Case 1: For 𝜆 = ¥í, 𝛤𝜆¥ì¥í = (1/2)(¡Ó /¡Óx¥ì) ln¦𝑔¥ì¥í¦ (no sum) [8-150]
Case 2: For ¥ì = ¥í ¡Á 𝜆, 𝛤𝜆¥ì¥ì = -(1/2𝑔𝜆𝜆) ¡Ó 𝑔¥ì¥ì/¡Óx𝜆 (no sum) [8-151]
Case 3: For ¥ì, ¥í, 𝜆 all distinct, 𝛤𝜆¥ì¥í = 0 [8-152]
𝛤010 = 𝛤001 = m' 𝛤100 = m'e2m-2n 𝛤111 = n' 𝛤122 = -re-2n 𝛤212 = 𝛤221 = 1/r
𝛤133 = -re-2nsin2𝜙 𝛤313 = 𝛤331 = 1/r 𝛤323 = 𝛤332 = cot 𝜙 𝛤233 = - sin 𝜙 cos 𝜙 [8-153]
ln¦𝑔¦1/2 = (1/2) ln (- e2m+2n r4 sin2 𝜙) = m + n + 2 ln r + ln sin 𝜙
𝑅¥ì¥í = (¡Ó2/¡Ó x¥ì¡Ó x¥í) ln¦𝑔¦1/2 - ¡Ó𝛤𝜆¥ì¥í /¡Óx𝜆 + 𝛤¥â¥ì𝜆 𝛤𝜆¥í¥â - 𝛤¥â¥ì¥í (¡Ó /¡Óx¥â) ln¦𝑔¦1/2 [8-154]
𝑅00/e2m-2n = -m" + m'n' - m'2 - 2m'/r = 0 𝑅11 = m" - m'n' + m'2 - 2n'/r = 0 [8-155a,155b]
𝑅22 = e-2n(1 + rm' - rn') - 1 = 0 𝑅33 = 𝑅22 sin2 𝜙 = 0 [8-155c,155d]
∘ [´Ü°è 3] 𝑅¥ì¥í = 0 ·ÎºÎÅÍ m°ú nÀÇ °ü°è½ÄÀ» ±¸Çϰí, 𝑔00 = 1 + 2𝚽 = 1 - 2M/r ·ÎºÎÅÍ m°ú nÀ» ¼Ò°ÅÇÑ ÃÖÁ¾Çظ¦ ±¸ÇÕ´Ï´Ù.
Now adding Eq. (153a) and (153b), m' + n' = 0 and m + n = b [b: constant]. As r ¡æ ¡Ä, b ¡æ 0. Consequently, m = - n.
From eq. (155c) 1 = (1 + 2rm')e2m = (re2m)', Hence re2m = r + C, 𝑔00 = e2m = 1 + C/r. From eq. (135)(121) 𝑔00 = 1 - 2M/r.
Finally we arrive at the solution! d𝜏2 = (1 - 2M/r) dt2 - (1 - 2M/r)-1 dr2 - r2d𝜙2 - r2sin2 𝜙 d𝜃2 ▮ [8-156]
9. Orbits in General Relativity <- Figure III-9 ÂüÁ¶
NewtonÀÇ ¸¸À¯ÀηÂÀÇ ¹ýÄ¢À» ÅëÇÑ Ç༺ÀÇ ±Ëµµ½Ä¸¦ °®°í¼, ÀÏ¹Ý »ó´ë¼ºÀÇ °¡Á¤¿¡ µû¶ó¼ °°Àº ¾ç»óÀ¸·Î ±â¼úÇϱâ·Î ÇÕ´Ï´Ù.
¿ì¸®´Â ±Ëµµ ¹æÁ¤½Ä (116)°ú ³î¶ø°Ô °¡±î¿î ¿¹ÃøÀ» º¸°Ô µÇ¸ç, õ¹® °üÃø °á°ú°¡ ¾ÐµµÀûÀ¸·Î EinsteinÀ» ÁöÁöÇÔÀ» ¾Ë°Ô µË´Ï´Ù.
∘ [´Ü°è 1] Schwarzschild ÇØ¿Í timelike geodesic ¹æÁ¤½ÄÀ» ÅëÇØ¼ NewtonÀû ±Ëµµ ¹æÁ¤½Ä (114)¿¡ »ó´ë·ÐÀû Ç×ÀÌ Ãß°¡µÈ ÇØÀ» ±¸ÇÕ´Ï´Ù.
d𝜏2 = (1 - 2M/r) dt2 - (1 - 2M/r)-1 dr2 - r2d𝜙2 - r2sin2 𝜙 d𝜃2 [9-157]
d2x𝜆/d𝜏2 + 𝛤𝜆¥ì¥í (dx¥ì/d𝜏) (dx¥í/d𝜏) = 0, 𝜆 = 0,1,2,3 <- x0 = t, x1 = r, x2 = 𝜙, x3 = 𝜃 [9-158]
Christoffel symbols are obtained from Eq. (153), where prime defferntiation with respect to r, n = -mÀ̸ç, and e2m = 1 - 2M/r
If 𝜆 = 0, d2t/d𝜏2 + 2m' (dr/d𝜏) (dt/dr) = 0, If 𝜆 = 1, d2r/d𝜏2 + m'e2m-2n(dt/d𝜏)2 + n'(dr/d𝜏)2 - re-2m(d𝜃/d𝜏) = 0 [9-159a,159b]
If 𝜆 = 2, d2𝜙/d𝜏2 + 2/r (dr/d𝜏) (d𝜙/dr) - sin 𝜙 cos 𝜙 (d𝜙/d𝜏)2 = 0, If 𝜆 = 3, d2𝜃/d𝜏2 + 2/r (dr/d𝜏) (d𝜙/dr) = 0 [9-159c]
For convenience later, let 𝛾 = 1 - 2M/r = e2m. From Eq. (159a), we may rewrite (d/d𝜏){ln (dt/d𝜏)} = -2 dm/dr
which can be intergrated and then exponetiated to give dt/d𝜏 = be-2m= b/ 𝛾, b: positive constant [9-160]
Eq. (159c) can be intergrated to obtain (as was Eq. (41b)) to obtain r2 d𝜃/d𝜏 = h, h: positive constant [9-161]
From Eq. (157) with 𝜙 = 𝜋/2, 1 = 𝛾 (dt/d𝜏)2 - 𝛾-1(dr/d𝜏)2 - r2(d𝜃/d𝜏)2 = 𝛾 (b/𝛾)2 - 𝛾-1{(dr/d𝜃)(h/r2)}2 - r2(h/r2)2 [9-162]
Applying 𝛾 = 1 - 2M/r, u = 1/r and du/d𝜃 = -(1/r2)dr/d𝜃 and differentiating with d𝜃 d2/d𝜃2 + u = M/h2 + 3Mu2 [9-163]
∘ [´Ü°è 2] ¾Õ¿¡¼ ±¸ÇÑ ÀÏ¹Ý »ó´ë·ÐÀû ±Ëµµ ¹æÁ¤½Ä¿¡¼ ³ªÅ¸³ ±ÙÀÏÁ¡ À̵¿ Ç×À¸·ÎºÎÅÍ ±Ù»çÇØ ¹æÁ¤½ÄÀ» À¯µµÇÕ´Ï´Ù.
For the first approximation of 3Mu2, we may give u1 = u(𝜃), u1 = (M/h2)(1 + e cos 𝜃) [9-164]
d2/d𝜃2 + u = M/h2 + 3M(1 + 2e cos 𝜃 + e2 cos2 𝜃) and because cos2 𝜃 = (1 + cos 2𝜃)/2
d2/d𝜃2 + u = M/h2 + 3M3/h4 + 3M3e2/2h4 + (6M3e/h4) cos 𝜃 + (3M3e2/2h4) cos 2𝜃 [9-165]
Lemma III-5
Let A be a real number, u = A is a solution of d2/d𝜃2 + u = A, u = (1/2) 𝜃 sin 𝜃 is a solution of d2/d𝜃2 + u = A cos 𝜃
u = -(A/3) cos 2𝜃 is a solution of d2/d𝜃2 + u = A cos 2𝜃
Applying the Lemma III-5 to each of the four tems of Eq. (165) and adding e cos 𝜃 which is a soultion of d2/d𝜃2 + u = 0,
u = (M/h2)[1 + 3M2/h2(1 + e2/2) + e cos 𝜃 + (3M2e/h2) 𝜃 sin 𝜃 - (M2e2/2h2) cos 2𝜃], e: constant [9-166]
Since 3M2/h2(1 + e2/2) is quite small (e.g. 8 ⨯ 10-8 for Mercury and final term with cos 2𝜃 is very small, both are negligible,
u ≈ (M/h2)[1 + e cos 𝜃 + (3M2e/h2) 𝜃 sin 𝜃], using approximation cos (3M2e/h2) ≈ 1, sin (3M2e/h2) ≈ (3M2e/h2)
u ≈ (M/h2)[1 + e cos (𝜃 - (3M2e/h2) 𝜃)] <- ¡ñ cos (𝜃 - 𝑀) = cos 𝜃 cos 𝑀 + sin 𝜃 sin 𝑀, 𝑀: 3M2e/h2 [9-167]
u has maximum value when 𝜃 = 0 and 𝜃 - (3M2e/h2) 𝜃 = 2𝜋, therefore 𝜃 = 2𝜋/ (1 - 3M2/h2) ≈ 2𝜋(1 + 3M2/h2)
[since for small x, (1 - x)-1 ≈ 1 + x] The direction of perihelion advances 𝛥𝜃 ≈ 6𝜋M2/h2, h2/M = ed = a(1 - e2), by Eq. (119),
The amount of procession per century 𝛥𝜃cent = n𝛥𝜃 = 6𝜋M2/h2n = 6𝜋M2n/a(1 - e2), n = the number of orbits per century ▮
∘ [´Ü°è 3] ÃÖÁ¾ÀÇ ¹æÁ¤½ÄÀ¸·ÎºÎÅÍ »êÃâµÈ ±Ù»çÇØ°¡ õ¹®Çп¡¼ °üÃøµÈ °á°ú¿Í ¾ó¸¶¸¸Å Â÷À̸¦ º¸ÀÌ´ÂÁö¸¦ Ã¼Å©ÇØ º¾´Ï´Ù.
Planet a(∻1011cm) e n General Relativity Observed
Mercury 57.91 0.2056 415 43.03 43.11 ¡¾ 0.45
Venus 108.21 0.0068 149 8.6 8.4 ¡¾ 4.8
Earth 149.60 0.0167 100 3.8 5.0 ¡¾ 1.2
Icarus 161.0 0.827 89 10.3 9.8 ¡¾ 0.8
¼ö¼º, ±Ý¼º, Áö±¸¿Í ¼ÒÇ༺ ÀÌÄ«·ç½º¸¦ À§ÇÑ µ¥ÀÌÅ͵éÀº Àü¹ÝÀûÀ¸·Î ±× °á°ú°¡ °·ÂÇÏ°Ô EinsteinÀÇ ÀÌ·ÐÀÇ ¿¹Ãø°ú ÀÏÄ¡ÇÕ´Ï´Ù.
10. The Bending of Light <- Figure III-10 ÂüÁ¶
∘ [´Ü°è 1] ºûÀº lightlike geodesicÀ» µû¶ó ¿òÁ÷ÀÌ´Â proper time = 0 ¿¡ ÇØ´çÇϴ žçÀÇ Áú·®°ú ¹ÝÁö¸§ÀÇ ÇÔ¼ö·Î ÈÖ¾îÁö´Â °¢µµ¸¦ ±¸ÇÕ´Ï´Ù.
d2x𝜆/d𝜌2 + 𝛤𝜆¥ì¥í (dx¥ì/d𝜌) (dx¥í/d𝜌) = 0, 𝜆 = 0,1,2,3 <- d𝜏/d𝜌 = 0, 𝜙 = 𝜋/2
d2/d𝜃2 + u = 3Mu2 u: 1/r <- the left side of Eq. (162) is zero, since d𝜏/d𝜌 = 0 replaces d𝜏/d𝜏 = 1. 'Classnotes' in detail [10-168]
u = 1/r = (1/ R) cos 𝜃 R: the minimumdistance from the Mass to the path of light ray, when M = 0 or x = r cos 𝜃 = R [10-169]
For a light ray grazing the sun, R¢Á ≈ 6.96 ⨯ 1010 cm, M¢Á ≈ 1.48 ⨯ 105 cm. Therefore u ≈ (1/ R) cos 𝜃, substitute it for Eq. (168).
d2/d𝜃2 + u ≈ (3M/R2) cos2 𝜃 = (3M/2R2) (1 + cos 2𝜃). By Lemma III-5, u1 = (3M/2R2){1 - (1/3) cos 2𝜃} = (M/R2){2 - cos2 𝜃)
u = 1/r = (1/ R) cos 𝜃 + (M/R2){2 - cos2 𝜃) [10-170]
From Figur III-10, as r ¡æ ¡Ä, 𝜃 will approach ∓ (𝜋/2 + 𝛥𝜃/2). Since 𝛥𝜃 is vey small the cos2 𝜃 term in Eq. (170) is negligible.
Passing to the limit of Eq. (170) as r ¡æ ¡Ä, 0 = (1/ R) cos 𝜃 (𝜋/2 + 𝛥𝜃/2) + 2M/R2,
Consequently, 2M/R = - cos (𝜋/2 + 𝛥𝜃/2) = sin 𝛥𝜃/2 ≈ 𝛥𝜃/2 or 𝛥𝜃 ≈ 4M/R. For the sun, 𝛥𝜃 ≈ 8.51 ⨯ 10-6 radians ≈ 1.75". ▮
∘ [´Ü°è 2] ´ÙÀ½Àº Newton ¿ªÇÐÀ¸·Î ºûÀÇ ÁøÇàÀ» e > 1 ÀÎ ½Ö°î¼± ÇÔ¼öÀÇ °æ·Î¿¡¼ žçÀÇ Áú·®°ú ¹ÝÁö¸§ÀÇ ÇÔ¼ö·Î ÈÖ¾îÁö´Â °¢µµ¸¦ ±¸ÇÕ´Ï´Ù..
The path of a photon is on brach of a hyperbola Eq. (116) with e > 1, 1/r = (M/r2)(1 + e cos 𝜃) where h = r2 d𝜃/dt [10-171,172]
Consider a case of a ray grazing the sun at the nearest position, r = R¢Á, 𝜃 = 0, from Eq. (107) we get r d𝜃/dt = 1(speed of light)
and h = r. Then Eq. (172) gives h = R¢Á. Now we obtain from Eq. (171) with cos 𝜃 = 1, e = R¢Á/M¢Á -1 ≈ R¢Á/M¢Á = 4.7 ⨯ 105
Let 𝛥𝜃N be the acute angle between the light's path asymtotes. As r ¡æ ¡Ä in Eq. (171), 𝜃 ¡æ ∓(𝜋/2 + 𝛥𝜃N),
0 = (M/R2) [1 + e cos (𝜋/2 + 𝛥𝜃N/2)] or 1/e = - cos (𝜋/2 + 𝛥𝜃N/2) = sin 𝛥𝜃N/2 ≈ 𝛥𝜃N/2
Hence the Newtonian deflection is 𝛥𝜃N ≈ 2/e = 2M¢Á/R¢Á which is exactly half that of general relativity. ▮
∘ [´Ü°è 3] ÅÂ¾ç ¿·¿¡¼ÀÇ ºûÀÇ ÈÖ¾îÁü¿¡ ´ëÇÑ ÀÏ¹Ý »ó´ë¼ºÀÇ ¿¹Ãø °ª°ú Newton ¿ªÇп¡¼ÀÇ ¿¹Ãø °ªÀ» °üÃø °á°ú¿Í ºñ±³ÇÕ´Ï´Ù.
1919³â ÀÌÈÄ ¸î¹øÀÇ ÀÏ½Ä ¶§ º°ÀÇ °Ñº¸±â À§Ä¡ °üÂû°ú ±Ù·¡ÀÇ ÀüÆÄ¿¡ ÀÇÇÑ °üÃø °á°ú´Â ¾ÐµµÀûÀ¸·Î EinsteinÀÇ À̷аú ÀÏÄ¡ÇÕ´Ï´Ù!
p.s. µÚ´Ê°Ô ½ÃÀÛÇßÁö¸¸ ÁöÀΰú 'Classnotes' ´öÅÿ¡ R. FaberÀÇ '¹ÌºÐ±âÇÏÇаú »ó´ë¼º ÀÔ¹®'À» ¸¶Ãļ ³Ê¹«³ª ±â»Þ´Ï´Ù!
GR ÀÔ¹®¼·Î À̸§³ Schutz³ª HartleÀÇ Ã¥µéÀº ¼öÇÐÀû ¾ö¹Ð¼º(rigor)ÀÌ °á¿©µÇ¾î °»ç ¾øÀÌ´Â ÇнÀÇÏ±â ¾î·Æ´Ù°í »ý°¢µÇ¾î
±×·¡¼ ¼öÇÐÀû ¾ö¹Ð¼ºÀ» °®Ãß°í ÀÖ´Â 'GR ÀÔ¹®'À» ã¾Æ Çì¸Þ´Ù°¡, Richard Faber Ã¥À» ¹ß°ßÇÑ °ÍÀº Àú¿¡°Ô´Â Å©³ªÅ« Çà¿îÀ̾úÀ½.
ÀÌ 'GR ÀÔ¹®'ÀÇ ÀåÁ¡Àº »ó´ë¼º ¿ø¸®(SR/GR)ÀÇ ³»¿ë ÀÚü¸¦ ÃæºÐÇÑ ¼öÇÐÀû rigor¸¦ °®°í¼ ¾ÆÁÖ Àß ¼³¸íÇØÁÖ°í ÀÖ´Ù´Â °ÍÀÓ.
±× ÇѰè´Â ¿øÀü¿¡ ÀÖ´Â °øº¯º¤ÅÍ¿Í ¹Ýº¯º¤ÅÍ µîÀÇ tensor ÇØ¼® °úÁ¤ÀÌ ¾øÀÌ ³í¸®À» Àü°³ÇÏ¿© Ãß°¡ÀÇ ÇнÀÀÌ ÇÊ¿äÇÏ´Ù´Â °ÍÀ̸ç,
ÇٽɺÎÀÎ energy momentum tensor ÇØ¼³ÀÌ ¾ø´Â µîÀÇ ¸î¸î ´ÜÁ¡¿¡µµ ºÒ±¸Çϰí, GR ÃÖ°í ÀÔ¹®¼·Î °·ÂÈ÷ ÃßõÇÔ! |
|
|