±âº» ÆäÀÌÁö Æ÷Æ®Æú¸®¿À ´ëÇѹα¹ÀÇ ÀüÅë°ÇÃà Áß±¹°ú ÀϺ»ÀÇ ÀüÅë°ÇÃà ¼­À¯·´°ú ¹Ì±¹ÀÇ °ÇÃà ±¹¿ª û¿À°æ Çö´ë ¿ìÁÖ·Ð ´ëÇѹα¹ÀÇ »êdz°æ ¹éµÎ´ë°£ Á¾ÁÖ»êÇà ³×ÆÈ È÷¸»¶ó¾ß Æ®·¹Å· ¸ùºí¶û Áö¿ª Æ®·¹Å· ¿ä¼¼¹ÌƼ ij³â µî Ƽº£Æ® ½ÇÅ©·Îµå ¾ß»ý »ý¹° ÆÄ³ë¶ó¸¶»çÁø °¶·¯¸® Ŭ·¡½Ä ·¹ÄÚµå °¶·¯¸® AT Æ÷·³ Æ®·¹Å· Á¤º¸ ¸µÅ©


 ·Î±×ÀÎ  È¸¿ø°¡ÀÔ

ÀϹݻó´ë¼º 5. Schwarzschild ÇØ
    ±è°ü¼®  2019-09-06 09:38:00, Á¶È¸¼ö : 906
- Download #1 : gr_3_4p.jpg (46.4 KB), Download : 1



8. The Schwarzschild Soutions <- Figure III-8 ÂüÁ¶

        Karl Schwarzschild(1873-1916)´Â 1916³â EinsteinÀÌ ÀÏ¹Ý »ó´ë¼ºÀÇ ¹ßÇ¥ ¼ö°³¿ù ¸¸¿¡ EinsteinÀÇ ¹æÁ¤½ÄÀÇ ÇØ¸¦ ±¸Çß½À´Ï´Ù.
       ¾Õ Àå¿¡¼­ÀÇ °æ¿ìó·³ ±¸Çü ´ëĪÀ¸·Î¼­ ´ëÀüµÇÁö ¾Ê°í Á¤ÀûÀÎ Áú·® ºÐÆ÷¸¦ ³ªÅ¸³»´Â °æ¿ì·Î¼­ 'Schwarzschild ú°' ¶ó°í ºÎ¸¨´Ï´Ù.


    ∘ [´Ü°è 1] ¸ÕÀú proper time À» ±¸Çü ´ëĪ¿¡ ÀûÇÕÇÑ ±¸¸é ÁÂÇ¥°èÀÇ »ï°¢ÇÔ¼ö ¹× ÀÚ¿¬·Î±× »ó¼ö eÀÇ ÇÔ¼ö·Î º¯ÇüÇÕ´Ï´Ù.
       𝑅¥ì¥í = 0,  ¥ì,¥í = 0,1,2,3,  d𝜏2 = dt2- dx2-dy2-dz2,  x = 𝜌 sin 𝜙 cos 𝜃,  y = 𝜌 sin 𝜙 sin 𝜃, z = 𝜌 cos 𝜙   [8-141,142,143]
       d𝜏2 = dt2 - d𝜌2 - 𝜌2d𝜙2 - 𝜌2sin2 𝜙 d𝜃2 .  <- This is still, of course, the metric of flat  spacetime   [8-144]
       d𝜏2 = U(𝜌)dt2 - V(𝜌) d𝜌2 -  W(𝜌)(𝜌2d𝜙2 + 𝜌2sin2 𝜙 d𝜃2)  <- U, V, W are function of 𝜌  differ slightly from unity   [8-145]
       d𝜏2 = A(r)dt2 - B(r) dr2 -  r2d𝜙2 - r2sin2 𝜙 d𝜃2)  <- If we introduce the variable r = 𝜌 W(𝜌)1/2    [8-146]
       d𝜏2 = e2mdt2 - e2n dr2 -  r2d𝜙2 - r2sin2 𝜙 d𝜃2)  <- finally, define m = m(r), n = n(r) by e2m = A and e2n = B   [8-147]
        d𝜏2 = 𝑔¥ì¥ídx¥ì dx¥í,  x0 = t, x1 = r, x2 = 𝜙, x3 = 𝜃
                      ⌈   e2m     0       0        0      ⌉  
        (𝑔¥ì¥í) = ¦­    0     - e2n     0        0      ¦­   and determinant  𝑔 =  - e2m+2n r4 sin2 𝜙   [8-148]    
                    ¦­    0       0      - r2       0      ¦­
                      ⌊    0       0      0  - r2sin2 𝜙 ⌋        

    ∘ [´Ü°è 2] ÀÏ¹Ý »ó´ë¼º metric °è¼ö°¡ Æ÷ÇÔµÈ Christoffel ±âÈ£¸¦ »êÃâÇÑ ÈÄ, Einstein ¹æÁ¤½ÄÀÇ Ricci tensor 𝑅¥ì¥í = 0 ÇØ¸¦ ±¸ÇÕ´Ï´Ù.  
       Since our coordinate system is orthogonal, 𝑔¥ì¥í = 0 for ¥ì ¡Á ¥í, 𝑔¥ì¥í = 0 for ¥ì ¡Á ¥í, 𝑔¥ì¥ì = 1/𝑔¥ì¥ì for all ¥ì,  in Eq. (126) then reduced to
       𝛤𝜆¥ì¥í = (1/2)𝑔𝜆𝜆(¡Ó 𝑔¥ì𝜆/¡Óx¥í + ¡Ó 𝑔¥ì𝜆/¡Óx¥ì - ¡Ó 𝑔¥ì¥í/¡Óx𝜆)    (no sum)   [8-149]
       Case 1: For 𝜆 = ¥í,  𝛤𝜆¥ì¥í = (1/2)(¡Ó /¡Óx¥ì) ln¦­𝑔¥ì¥í¦­   (no sum)   [8-150]              
       Case 2: For ¥ì = ¥í ¡Á 𝜆,  𝛤𝜆¥ì¥ì = -(1/2𝑔𝜆𝜆) ¡Ó 𝑔¥ì¥ì/¡Óx𝜆   (no sum)   [8-151]
       Case 3: For ¥ì, ¥í, 𝜆 all distinct,   𝛤𝜆¥ì¥í = 0   [8-152]
       𝛤010 = 𝛤001 = m'     𝛤100 = m'e2m-2n     𝛤111 = n'     𝛤122 = -re-2n     𝛤212 = 𝛤221 = 1/r 
       𝛤133 = -re-2nsin2𝜙     𝛤313 = 𝛤331 = 1/r    𝛤323 = 𝛤332 = cot 𝜙    𝛤233 = - sin 𝜙 cos 𝜙   [8-153]                                                              
        ln¦­𝑔¦­1/2 = (1/2) ln (- e2m+2n r4 sin2 𝜙) = m + n + 2 ln r + ln sin 𝜙  
       𝑅¥ì¥í = (¡Ó2/¡Ó x¥ì¡Ó x¥í) ln¦­𝑔¦­1/2 - ¡Ó𝛤𝜆¥ì¥í /¡Óx𝜆 + 𝛤¥â¥ì𝜆 𝛤𝜆¥í¥â -  𝛤¥â¥ì¥í (¡Ó /¡Óx¥â) ln¦­𝑔¦­1/2   [8-154]
       𝑅00/e2m-2n = -m" + m'n' - m'2 - 2m'/r = 0   𝑅11 = m" - m'n' + m'2 - 2n'/r = 0   [8-155a,155b]
       𝑅22 = e-2n(1 + rm' - rn') - 1 = 0    𝑅33 = 𝑅22 sin2 𝜙 = 0   [8-155c,155d]        

    ∘ [´Ü°è 3] 𝑅¥ì¥í = 0 ·ÎºÎÅÍ m°ú nÀÇ °ü°è½ÄÀ» ±¸Çϰí,  𝑔00 = 1 + 2𝚽 = 1 - 2M/r ·ÎºÎÅÍ m°ú nÀ» ¼Ò°ÅÇÑ ÃÖÁ¾Çظ¦ ±¸ÇÕ´Ï´Ù.
       Now adding Eq. (153a) and (153b), m' + n' = 0 and m + n = b [b: constant]. As r ¡æ ¡Ä, b ¡æ 0. Consequently, m = - n.  
       From eq. (155c) 1 = (1 + 2rm')e2m = (re2m)', Hence re2m = r + C, 𝑔00 = e2m = 1 + C/r. From eq. (135)(121)  𝑔00 = 1 - 2M/r.
       Finally we arrive at the solution!  d𝜏2 = (1 - 2M/r) dt2 -  (1 - 2M/r)-1 dr2 -  r2d𝜙2 - r2sin2 𝜙 d𝜃2  ▮   [8-156]  

9. Orbits in General Relativity <- Figure III-9 ÂüÁ¶  

       NewtonÀÇ ¸¸À¯ÀηÂÀÇ ¹ýÄ¢À» ÅëÇÑ Ç༺ÀÇ ±Ëµµ½Ä¸¦ °®°í¼­, ÀÏ¹Ý »ó´ë¼ºÀÇ °¡Á¤¿¡ µû¶ó¼­ °°Àº ¾ç»óÀ¸·Î ±â¼úÇϱâ·Î ÇÕ´Ï´Ù.
       ¿ì¸®´Â ±Ëµµ ¹æÁ¤½Ä (116)°ú ³î¶ø°Ô °¡±î¿î ¿¹ÃøÀ» º¸°Ô µÇ¸ç, õ¹® °üÃø °á°ú°¡ ¾ÐµµÀûÀ¸·Î EinsteinÀ» ÁöÁöÇÔÀ» ¾Ë°Ô µË´Ï´Ù.

   
    ∘ [´Ü°è 1] Schwarzschild ÇØ¿Í timelike geodesic ¹æÁ¤½ÄÀ» ÅëÇØ¼­ NewtonÀû ±Ëµµ ¹æÁ¤½Ä (114)¿¡ »ó´ë·ÐÀû Ç×ÀÌ Ãß°¡µÈ ÇØÀ» ±¸ÇÕ´Ï´Ù.
       d𝜏2 = (1 - 2M/r) dt2 -  (1 - 2M/r)-1 dr2 -  r2d𝜙2 - r2sin2 𝜙 d𝜃2   [9-157]
       d2x𝜆/d𝜏2 + 𝛤𝜆¥ì¥í (dx¥ì/d𝜏) (dx¥í/d𝜏) = 0,  𝜆 = 0,1,2,3  <- x0 = t,  x1 = r, x2 = 𝜙, x3 = 𝜃   [9-158]
      Christoffel symbols are obtained from Eq. (153), where prime defferntiation with respect to r, n = -mÀ̸ç, and e2m = 1 - 2M/r
      If 𝜆 = 0, d2t/d𝜏2 + 2m' (dr/d𝜏) (dt/dr) = 0,  If 𝜆 = 1,  d2r/d𝜏2 + m'e2m-2n(dt/d𝜏)2 + n'(dr/d𝜏)2 - re-2m(d𝜃/d𝜏) = 0   [9-159a,159b]
      If 𝜆 = 2, d2𝜙/d𝜏2 + 2/r (dr/d𝜏) (d𝜙/dr) - sin 𝜙 cos 𝜙 (d𝜙/d𝜏)2 = 0,  If 𝜆 = 3,  d2𝜃/d𝜏2 + 2/r (dr/d𝜏) (d𝜙/dr) = 0   [9-159c]
      For convenience later, let   𝛾 = 1 - 2M/r = e2m. From Eq. (159a), we may rewrite  (d/d𝜏){ln (dt/d𝜏)} = -2 dm/dr
      which can be intergrated and then exponetiated to give  dt/d𝜏 = be-2m= b/ 𝛾,  b: positive constant   [9-160]
      Eq. (159c) can be intergrated to obtain (as was Eq. (41b)) to obtain   r2 d𝜃/d𝜏 = h,  h: positive constant   [9-161]
      From Eq. (157) with 𝜙 = 𝜋/2,  1 =  𝛾 (dt/d𝜏)2 -  𝛾-1(dr/d𝜏)2 - r2(d𝜃/d𝜏)2 =   𝛾 (b/𝛾)2 -  𝛾-1{(dr/d𝜃)(h/r2)}2 - r2(h/r2)2   [9-162]
      Applying 𝛾 = 1 - 2M/r, u = 1/r and du/d𝜃 = -(1/r2)dr/d𝜃 and differentiating with d𝜃  d2/d𝜃2 + u = M/h2 + 3Mu2   [9-163]      
 
   ∘ [´Ü°è 2] ¾Õ¿¡¼­ ±¸ÇÑ ÀÏ¹Ý »ó´ë·ÐÀû ±Ëµµ ¹æÁ¤½Ä¿¡¼­ ³ªÅ¸³­ ±ÙÀÏÁ¡ À̵¿ Ç×À¸·ÎºÎÅÍ ±Ù»çÇØ ¹æÁ¤½ÄÀ» À¯µµÇÕ´Ï´Ù.
      For the first approximation of 3Mu2, we may give u1 = u(𝜃),  u1 = (M/h2)(1 + e cos 𝜃)   [9-164]
      d2/d𝜃2 + u = M/h2 + 3M(1 + 2e cos 𝜃 + e2 cos2 𝜃) and because cos2 𝜃 = (1 + cos 2𝜃)/2
      d2/d𝜃2 + u = M/h2 + 3M3/h4 + 3M3e2/2h4 + (6M3e/h4) cos 𝜃 + (3M3e2/2h4) cos 2𝜃   [9-165]

      Lemma III-5
      Let A be a real number,  u = A is a solution of d2/d𝜃2 + u = A,  u = (1/2) 𝜃 sin 𝜃 is a solution of d2/d𝜃2 + u = A cos 𝜃
      u = -(A/3) cos 2𝜃 is a solution of d2/d𝜃2 + u = A cos 2𝜃
      Applying the Lemma III-5 to each of the four tems of Eq. (165) and adding e cos 𝜃 which is a soultion of d2/d𝜃2 + u = 0,
      u = (M/h2)[1 + 3M2/h2(1 + e2/2) + e cos 𝜃 + (3M2e/h2) 𝜃 sin 𝜃 - (M2e2/2h2) cos 2𝜃], e: constant   [9-166]
      Since 3M2/h2(1 + e2/2) is quite small (e.g. 8 ⨯ 10-8 for Mercury and final term with cos 2𝜃 is very small, both are negligible,
      u ≈ (M/h2)[1 + e cos 𝜃 +  (3M2e/h2) 𝜃 sin 𝜃], using approximation cos  (3M2e/h2) ≈ 1,  sin (3M2e/h2) ≈  (3M2e/h2)
      u ≈ (M/h2)[1 + e cos (𝜃 -  (3M2e/h2) 𝜃)]  <- ¡ñ cos (𝜃 - 𝑀) = cos 𝜃 cos 𝑀  + sin 𝜃 sin 𝑀,  𝑀: 3M2e/h2   [9-167]
      u has maximum value when 𝜃 = 0 and  𝜃 -  (3M2e/h2) 𝜃 = 2𝜋, therefore 𝜃  = 2𝜋/ (1 - 3M2/h2) ≈ 2𝜋(1 + 3M2/h2)
      [since for small x, (1 - x)-1 ≈ 1 + x] The direction of perihelion advances 𝛥𝜃 ≈ 6𝜋M2/h2,  h2/M = ed = a(1 - e2), by Eq. (119),  
      The amount of procession per century 𝛥𝜃cent = n𝛥𝜃 = 6𝜋M2/h2n = 6𝜋M2n/a(1 - e2),  n = the number of orbits per century  ▮

    ∘ [´Ü°è 3] ÃÖÁ¾ÀÇ ¹æÁ¤½ÄÀ¸·ÎºÎÅÍ »êÃâµÈ ±Ù»çÇØ°¡ õ¹®Çп¡¼­ °üÃøµÈ °á°ú¿Í ¾ó¸¶¸¸Å­ Â÷À̸¦ º¸ÀÌ´ÂÁö¸¦ Ã¼Å©ÇØ º¾´Ï´Ù.
       Planet      a(∻1011cm)       e           n      General Relativity        Observed
       Mercury     57.91          0.2056     415            43.03                  43.11 ¡¾ 0.45
       Venus       108.21          0.0068     149              8.6                      8.4   ¡¾ 4.8
       Earth        149.60          0.0167     100              3.8                      5.0   ¡¾ 1.2
       Icarus       161.0            0.827         89            10.3                      9.8   ¡¾ 0.8
 
     ¼ö¼º, ±Ý¼º, Áö±¸¿Í ¼ÒÇ༺ ÀÌÄ«·ç½º¸¦ À§ÇÑ µ¥ÀÌÅ͵éÀº Àü¹ÝÀûÀ¸·Î ±× °á°ú°¡ °­·ÂÇÏ°Ô EinsteinÀÇ ÀÌ·ÐÀÇ ¿¹Ãø°ú ÀÏÄ¡ÇÕ´Ï´Ù.

10. The Bending of Light <- Figure III-10 ÂüÁ¶  

    ∘ [´Ü°è 1] ºûÀº lightlike geodesicÀ» µû¶ó ¿òÁ÷ÀÌ´Â proper time = 0 ¿¡ ÇØ´çÇϴ žçÀÇ Áú·®°ú ¹ÝÁö¸§ÀÇ ÇÔ¼ö·Î ÈÖ¾îÁö´Â °¢µµ¸¦ ±¸ÇÕ´Ï´Ù.
       d2x𝜆/d𝜌2 + 𝛤𝜆¥ì¥í (dx¥ì/d𝜌) (dx¥í/d𝜌) = 0,  𝜆 = 0,1,2,3  <- d𝜏/d𝜌 = 0,  𝜙 = 𝜋/2
       d2/d𝜃2 + u = 3Mu2  u: 1/r  <- the left side of Eq. (162) is zero, since d𝜏/d𝜌 = 0 replaces d𝜏/d𝜏 = 1. 'Classnotes' in detail   [10-168]
       u = 1/r  = (1/ R) cos 𝜃   R: the minimumdistance from the Mass to the path of light ray, when M = 0  or  x = r cos 𝜃 = R   [10-169]
       For a light ray grazing the sun, R¢Á ≈ 6.96 ⨯ 1010 cm, M¢Á ≈ 1.48 ⨯ 105 cm. Therefore u ≈ (1/ R) cos 𝜃, substitute it for Eq. (168).
       d2/d𝜃2 + u ≈ (3M/R2) cos2 𝜃 =  (3M/2R2) (1 + cos 2𝜃). By Lemma III-5, u1 =  (3M/2R2){1 - (1/3) cos 2𝜃} = (M/R2){2 - cos2 𝜃)
       u = 1/r  = (1/ R) cos 𝜃 +  (M/R2){2 - cos2 𝜃)   [10-170]
       From Figur III-10, as r ¡æ ¡Ä, 𝜃 will approach ∓ (𝜋/2 + 𝛥𝜃/2). Since 𝛥𝜃 is vey small the cos2 𝜃 term in Eq. (170) is negligible.
       Passing to the limit of Eq. (170) as  r ¡æ ¡Ä,  0 =  (1/ R) cos 𝜃 (𝜋/2 + 𝛥𝜃/2) + 2M/R2,
       Consequently, 2M/R = - cos (𝜋/2 + 𝛥𝜃/2) = sin 𝛥𝜃/2 ≈ 𝛥𝜃/2  or  𝛥𝜃 ≈ 4M/R. For the sun, 𝛥𝜃 ≈ 8.51 ⨯ 10-6 radians ≈ 1.75". ▮
 
   ∘ [´Ü°è 2] ´ÙÀ½Àº Newton ¿ªÇÐÀ¸·Î ºûÀÇ ÁøÇàÀ»  e > 1 ÀÎ ½Ö°î¼± ÇÔ¼öÀÇ °æ·Î¿¡¼­ žçÀÇ Áú·®°ú  ¹ÝÁö¸§ÀÇ ÇÔ¼ö·Î ÈÖ¾îÁö´Â °¢µµ¸¦ ±¸ÇÕ´Ï´Ù..  
       The path of a photon is on brach of  a hyperbola  Eq. (116) with e > 1, 1/r = (M/r2)(1 + e cos 𝜃) where h = r2 d𝜃/dt   [10-171,172]  
       Consider a case of a ray grazing the sun at the nearest position, r = R¢Á, 𝜃 = 0, from Eq. (107) we get r d𝜃/dt = 1(speed of light)
       and h = r.  Then Eq. (172) gives h = R¢Á. Now we obtain from Eq. (171) with cos 𝜃 = 1,  e = R¢Á/M¢Á -1 ≈ R¢Á/M¢Á = 4.7 ⨯ 105
       Let  𝛥𝜃N be the acute angle between the light's path asymtotes. As r ¡æ ¡Ä in Eq. (171), 𝜃 ¡æ ∓(𝜋/2 + 𝛥𝜃N),
       0 = (M/R2) [1 + e cos (𝜋/2 + 𝛥𝜃N/2)]  or 1/e = - cos (𝜋/2 + 𝛥𝜃N/2) = sin 𝛥𝜃N/2 ≈ 𝛥𝜃N/2
       Hence the Newtonian deflection is 𝛥𝜃N ≈ 2/e = 2M¢Á/R¢Á which is exactly half that of general relativity. ▮  

     ∘ [´Ü°è 3] ÅÂ¾ç ¿·¿¡¼­ÀÇ ºûÀÇ ÈÖ¾îÁü¿¡ ´ëÇÑ ÀÏ¹Ý »ó´ë¼ºÀÇ ¿¹Ãø °ª°ú Newton ¿ªÇп¡¼­ÀÇ ¿¹Ãø °ªÀ» °üÃø °á°ú¿Í ºñ±³ÇÕ´Ï´Ù.       

       1919³â ÀÌÈÄ ¸î¹øÀÇ ÀÏ½Ä ¶§ º°ÀÇ °Ñº¸±â À§Ä¡ °üÂû°ú ±Ù·¡ÀÇ ÀüÆÄ¿¡ ÀÇÇÑ °üÃø °á°ú´Â ¾ÐµµÀûÀ¸·Î EinsteinÀÇ À̷аú ÀÏÄ¡ÇÕ´Ï´Ù!            

p.s.  µÚ´Ê°Ô ½ÃÀÛÇßÁö¸¸ ÁöÀΰú 'Classnotes' ´öÅÿ¡ R. FaberÀÇ '¹ÌºÐ±âÇÏÇаú »ó´ë¼º ÀÔ¹®'À» ¸¶Ãļ­ ³Ê¹«³ª ±â»Þ´Ï´Ù!
       GR ÀÔ¹®¼­·Î À̸§³­ Schutz³ª HartleÀÇ Ã¥µéÀº ¼öÇÐÀû ¾ö¹Ð¼º(rigor)ÀÌ °á¿©µÇ¾î °­»ç ¾øÀÌ´Â ÇнÀÇÏ±â ¾î·Æ´Ù°í »ý°¢µÇ¾î
       ±×·¡¼­ ¼öÇÐÀû ¾ö¹Ð¼ºÀ» °®Ãß°í ÀÖ´Â 'GR ÀÔ¹®'À» ã¾Æ Çì¸Þ´Ù°¡, Richard Faber Ã¥À» ¹ß°ßÇÑ °ÍÀº Àú¿¡°Ô´Â Å©³ªÅ« Çà¿îÀ̾úÀ½.
       ÀÌ 'GR ÀÔ¹®'ÀÇ ÀåÁ¡Àº »ó´ë¼º ¿ø¸®(SR/GR)ÀÇ ³»¿ë ÀÚü¸¦ ÃæºÐÇÑ ¼öÇÐÀû rigor¸¦ °®°í¼­ ¾ÆÁÖ Àß ¼³¸íÇØÁÖ°í ÀÖ´Ù´Â °ÍÀÓ.
       ±× ÇѰè´Â ¿øÀü¿¡ ÀÖ´Â °øº¯º¤ÅÍ¿Í ¹Ýº¯º¤ÅÍ µîÀÇ tensor ÇØ¼® °úÁ¤ÀÌ ¾øÀÌ ³í¸®À» Àü°³ÇÏ¿© Ãß°¡ÀÇ ÇнÀÀÌ ÇÊ¿äÇÏ´Ù´Â °ÍÀ̸ç,
       ÇٽɺÎÀÎ energy momentum tensor ÇØ¼³ÀÌ ¾ø´Â µîÀÇ ¸î¸î ´ÜÁ¡¿¡µµ ºÒ±¸Çϰí, GR ÃÖ°í ÀÔ¹®¼­·Î °­·ÂÈ÷ ÃßõÇÔ!


Name
Spamfree

     ¿©±â¸¦ Ŭ¸¯ÇØ ÁÖ¼¼¿ä.

Password
Comment

  ´ä±Û¾²±â   ¸ñ·Ïº¸±â
¹øÈ£ Á¦               ¸ñ À̸§ ¿¬°ü ³¯Â¥ Á¶È¸
92      Mathematical Cosmology 3. Cosmological models I    ±è°ü¼® 6 2020-06-07
16:23:00
5926
91        Mathematical Cosmology 4. Cosmological models II    ±è°ü¼® 6 2020-06-07
16:23:00
5926
90          Mathematical Cosmology 5. Inflationary cosmology    ±è°ü¼® 6 2020-06-07
16:23:00
5926
89            Mathematical Cosmology 6. Perturbations    ±è°ü¼® 6 2020-06-07
16:23:00
5926
88  Hobson Efstathiou Lasenby GR 11a. Schwartzschild ºí·¢È¦  🔴  [2]  ±è°ü¼® 3 2020-05-13
13:44:21
17819
87    Hobson et al. GR 11b. Áß·ÂÀÇ ºØ±«, ºí·¢È¦ Çü¼º    ±è°ü¼® 3 2020-05-13
13:44:21
17819
86      Hobson et al. GR 11c. ¿úȦ, Hawking È¿°ú    ±è°ü¼® 3 2020-05-13
13:44:21
17819
85  Hobson Efstathiou Lasenby GR 19. GRÀÇ º¯ºÐÀû Á¢±Ù    ±è°ü¼® 1 2020-04-16
07:13:39
580
84  Dirac's GR 35. ¿ìÁÖÇ× [u. 3/2020]   🔵  [3]  ±è°ü¼® 1 2020-01-22
08:59:01
3682
83  1/20 ±º¾÷¸®¿¡¼­ º» Orion ¼º¿î^^    ±è°ü¼® 1 2020-01-20
23:28:21
473
82  º¤ÅÍ¿Í ÅÙ¼­ 6. ÅÙ¼­ ÀÀ¿ë [u. 1/2020]    ±è°ü¼® 1 2020-01-01
19:32:21
579
81  2019³â ³ëº§¹°¸®Çлó - PeeblesÀÇ ¹°¸®Àû ¿ìÁַР  ✅    ±è°ü¼® 1 2019-10-14
19:30:49
1247
80  ÀϹݻó´ë¼º(GR) 1. µî°¡¿ø¸®; Á߷°ú °î·ü   🔵    ±è°ü¼® 5 2019-09-06
09:38:00
5147
79    ÀϹݻó´ë¼º 2. Newton Á߷·РÀç°ËÅä    ±è°ü¼® 5 2019-09-06
09:38:00
5147
78      ÀϹݻó´ë¼º 3. Ư¼ö»ó´ë¼º; ÃøÁö¼±    ±è°ü¼® 5 2019-09-06
09:38:00
5147
77        ÀϹݻó´ë¼º 4. Einstein À广Á¤½Ä ***    ±è°ü¼® 5 2019-09-06
09:38:00
5147
         ÀϹݻó´ë¼º 5. Schwarzschild ÇØ    ±è°ü¼® 5 2019-09-06
09:38:00
5147
75  ¹ÌºÐ±âÇÏÇÐ 1. °î¼±; Gauss °î·ü; °î¸é  🔵    ±è°ü¼® 4 2019-06-16
16:55:58
5382
74    ¹ÌºÐ±âÇÏÇÐ 2. Á¦Àϱ⺻Çü½Ä; Á¦À̱⺻Çü½Ä    ±è°ü¼® 4 2019-06-16
16:55:58
5382
73      ¹ÌºÐ±âÇÏÇÐ 3. Gauss °î·ü II; ÃøÁö¼± [u. 12/2019]  [1]  ±è°ü¼® 4 2019-06-16
16:55:58
5382
72        ¹ÌºÐ±âÇÏÇÐ 4. Riemann °î·üÅÙ¼­; ´Ù¾çü    ±è°ü¼® 4 2019-06-16
16:55:58
5382
71  5/28 ±º¾÷¸®¿¡¼­ ÀºÇϼö ÃÔ¿µ^^    ±è°ü¼® 1 2019-05-30
01:20:31
854
70  ÅÙ¼­ ÇØ¼® I-1. Dyad¿Í ÅÙ¼­ÀÇ ¿¬»ê  🔵    ±è°ü¼® 5 2019-07-02
16:01:21
6044
69    ÅÙ¼­ ÇØ¼® I-2. ÅÙ¼­ ¹ÌÀûºÐ; ÁÂÇ¥º¯È¯ I    ±è°ü¼® 5 2019-07-02
16:01:21
6044
68      ÅÙ¼­ ÇØ¼® II-1. ÀÏ¹Ý ÁÂÇ¥°è ÅÙ¼­ÀÇ ¿¬»ê    ±è°ü¼® 5 2019-07-02
16:01:21
6044
67        ÅÙ¼­ ÇØ¼® II-2. ÁÂÇ¥º¯È¯ II; ÀÏ¹Ý ÁÂÇ¥°è ¹ÌºÐ    ±è°ü¼® 5 2019-07-02
16:01:21
6044
66          ÅÙ¼­ ÇØ¼® II-3. ÀÏ¹Ý ÁÂÇ¥°è ÀûºÐ; ÀÀ¿ë    ±è°ü¼® 5 2019-07-02
16:01:21
6044
65  VerlindeÀÇ 'Á߷°ú ¿ìÁÖÀÇ ¾ÏÈæ ...' (°­¿¬)    ±è°ü¼® 1 2019-02-03
21:27:44
690
64  »ó´ë¼º ÀÌ·Ð(SR/GR)ÀÇ ÇнÀ °úÁ¤    ±è°ü¼® 1 2018-07-15
15:31:25
677
63  Æ¯¼ö»ó´ë¼º(SR) I-1. °£°Ý; ½Ã°£ ÆØÃ¢  🔴    ±è°ü¼® 4 2018-07-05
06:34:56
25318
62    Ư¼ö»ó´ë¼º I-2. ·Î·»Ã÷ º¯È¯    ±è°ü¼® 4 2018-07-05
06:34:56
25318
61      Ư¼ö»ó´ë¼º ¿ªÇÐ II-1. 4-º¤ÅÍ; µ¿·ÂÇÐ [u. 3/2021]    ±è°ü¼® 4 2018-07-05
06:34:56
25318
60        Ư¼ö»ó´ë¼º ¿ªÇÐ II-2. ÃøÁö¼±; ±¤¼± µî    ±è°ü¼® 4 2018-07-05
06:34:56
25318
59  Maxwell ¹æÁ¤½Ä°ú ÀüÀÚ±âÆÄÀÇ ¼Óµµ  🔵    ±è°ü¼® 1 2018-06-22
00:35:54
4548
58  »ç½Ê³â¸¸ÀÇ ¼öÇÐ ÀçÇнÀ^^   ✅  [3]  ±è°ü¼® 1 2018-04-21
18:16:20
1007
57  Çö´ë ¿ìÁÖ·Ð ÀÔ¹®¼­    ±è°ü¼® 2 2018-04-23
18:39:44
610

    ¸ñ·Ïº¸±â   ÀÌÀüÆäÀÌÁö   ´ÙÀ½ÆäÀÌÁö     ±Û¾²±â [1][2] 3 [4][5]
    

Copyright 1999-2025 Zeroboard / skin by zero & Artech