±è°ü¼®
|
2019-05-27 13:44:06, Á¶È¸¼ö : 1,032 |
- Download #1 : Tensor_I_1.jpg (28.3 KB), Download : 2


ÀÏ¹Ý »ó´ë¼º ¿ø¸®(GR)´Â ÅÙ¼ ¹æÁ¤½Ä(tensor equation)À̹ǷΠÀ̸¦ ÀÌÇØÇÏ·Á¸é tensor¸¦ ÇнÀÇÏ¿©¾ß¸¸ ÇÕ´Ï´Ù. ±× ±âÃʷμ,
vector¶õ ¼öÇÐ/¹°¸®Çп¡¼ Å©±â¿Í ¹æÇâÀ» °®´Â ±âÇÏÀû °´Ã¼(geometric object)À̸ç, scalar¶õ Å©±â¸¸À» °®´Â °´Ã¼(object)ÀÔ´Ï´Ù.
vector space R©ú À̶õ vectorµéÀÌ ¼·Î ´õÇØÁö°Å³ª, scalar¿ÍÀÇ °ö¼ÀÀÌ °¡´ÉÇÑ ÁýÇÕÀ» °¡¸®Å°¸ç, À̶§ n°³ÀÇ ¼ººÐÀ» °®½À´Ï´Ù.
I-1 TensorÀÇ °³³ä
Tensor¶õ °³³äÀûÀ¸·Î´Â 'Á¤ÀÇµÈ ÁÂÇ¥°è(coordinate system)ÀÇ ¼ººÐÀ» °®µµ·Ï ÇÑ vectorÀÇ È®Àå'À̶ó°í ÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÀÌ´Â tensor·Î Ç¥±âµÈ ¸ðµç ¹æÁ¤½Ä°ú ¹ýÄ¢µéÀÌ 'ÁÂÇ¥°è °£ÀÇ À̵¿°ú ȸÀü µîÀÇ °¢Á¾ º¯È¯¿¡ ´ëÇÑ ºÒº¯¼º'À» À¯ÀÚÇϱâ À§ÇÔÀÔ´Ï´Ù.
ƯÁ¤ tensor°¡ Á¤ÀǵǾî ÀÖ´Â ÁÂÇ¥°è´Â ¼±Çü µ¶¸³ÇÑ ±âÀú(linearly independent basis) tensorµé·Î½á ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.
* ¼±Çü µ¶¸³(linear independence): ÇϳªÀÇ vector space¿¡ ¼ÓÇÏ´Â vectorÀÇ ÁýÇÕ¿¡¼ ¾î¶² vector¶óµµ ´Ù¸¥ vectorµéÀÇ
linear combination(¼±Çü °áÇÕ)À¸·Î Á¤ÀÇÇÒ ¼ö ¾ø´Â °æ¿ì¸¦ ¸»ÇÕ´Ï´Ù. ↦ 𝐀: matrix of vectors, det 𝐀 ¡Á 0
I-2 (4.2) TensorÀÇ Â÷¼ö(order)
Tensor u = u1e1 + u2e2 + ... + unen [en: unit baisis(´ÜÀ§ ±âÀú) tensor, ¡«en¡«= 1] * Cartesian ÁÂÇ¥°èÀÇ °æ¿ì
NÂ÷ tensor´Â 3Â÷¿ø¿¡¼´Â 3n°³ÀÇ, ÀϹÝÀû MÂ÷¿ø¿¡¼´Â Mn°³ÀÇ basis tensor¿Í ¼ººÐ(component)À» °®½À´Ï´Ù..
0Â÷ tensor´Â ÇѰ³ÀÇ ¼ººÐÀ» °®´Â scalarÀ̸ç, 1Â÷ tensor´Â vector·Î¼ 3Â÷¿ø¿¡¼´Â 31 = 3°³ÀÇ ¼ººÐÀ» °®À¸¸ç,
2Â÷ tensor ¥ò𝑖𝑗´Â MÂ÷¿ø¿¡¼ M2°³ÀÇ ¼ººÐÀ» °¡Áö¹Ç·Î 3Â÷¿ø¿¡¼ 32 = 9°³, 4Â÷¿ø¿¡¼ 42 = 16°³ÀÇ ¼ººÐÀ» °®½À´Ï´Ù.
Tensor ¥ò = [¥ò𝑖𝑗] =
⌈ ¥ò11 ¥ò12 ¥ò13 ⌉
¦ ¥ò21 ¥ò22 ¥ò23 ¦ (𝑖,𝑗 = 1,2,3) [4.2.6]
⌊ ¥ò31 ¥ò32 ¥ò33 ⌋
I-3 (4.3) TensorÀÇ Áö¼ö(index)
Tensor´Â Â÷¼ö¿Í °°Àº ¼ýÀÚÀÇ Áö¼ö(index)¸¦ °¡Áý´Ï´Ù. Áï, 2Â÷´Â 2°³, 3Â÷´Â 3°³, 4Â÷´Â 4°³ÀÇ Áö¼ö(ex: C𝑖𝑗𝑘𝑙)¸¦ °¡Áý´Ï´Ù.
TensorÀÇ ¿¬»êÀº 1Â÷ tensorÀÎ vectorÀÇ °æ¿ì¿Í À¯»çÇÏ°Ô µÇ´Âµ¥, ´Ù¸¸ ±× Áö¼ö(index)´Â ²À ÀÏÄ¡ÇØ¾ß¸¸ ÇÕ´Ï´Ù. ex) C𝑗𝑘 = A𝑗𝑘 + B𝑗𝑘
* Einstein's Summation Convention(ÇÕÀÇ ±Ô¾à) <- superscript(À§Ã·ÀÚ)¿Í subscript(¾Æ·¡Ã·ÀÚ)°£ Áߺ¹ °¡´É
a) Tensor·Î Ç¥±âµÈ ½Ä¿¡¼ Áߺ¹ Áö¼ö(dummy index)´Â ÇÕÀÇ ±âÈ£(¢²)¸¦ ´ëÄ¡ÇÕ´Ï´Ù. ex) A𝑘𝑘 = ¢² A𝑘𝑘 (𝑘=1,2,3) = A11 + A22 + A33
b) °°Àº Ç׿¡¼ Áߺ¹ Áö¼ö´Â 2°³¸¦ ³ÑÀ» ¼ö ¾ø½À´Ï´Ù. ex) v = ϵ𝑖𝑗𝑘 a𝑖b𝑗c𝑗 [𝑗°¡ 3°³¶ó Ʋ¸²] ¢¡ v = ϵ𝑖𝑗𝑘 a𝑖b𝑗c𝑘
* Free index rule(ÀÚÀ¯ Áö¼ö ±ÔÄ¢)
Tensor ¹æÁ¤½Ä¿¡¼ ¾çÂÊ º¯ÀÇ ÀÚÀ¯ Áö¼ö(free index)´Â µ¿ÀÏÇØ¾ß ÇÕ´Ï´Ù. ex) t𝑘 = ¥ò𝑗𝑘 n𝑘 [Ʋ¸²] ¢¡ t𝑗 = ¥ò𝑗𝑘n𝑘
I-3 (4.5) Ưº°ÇÑ Á¾·ùÀÇ Tensor
a) Kronecker delta: ¥ä𝑖𝑗 = 0 (𝑖¡Á𝑗), 1 (𝑖=𝑗) [4.5.1] <- ³ªÁß¿¡ ³ª¿À´Â unit (´ÜÀ§) tensorÀÇ Áö¼ö Ç¥±âÀÓ.
¥ä11 = 1 ¥ä12 = 0 ¥ä13 = 0
¥ä21 = 0 ¥ä22 = 1 ¥ä23 = 0 [4.5.2]
¥ä31 = 0 ¥ä32 = 0 ¥ä33 = 1
Kronecker delta´Â °áÇÕµÈ ´Ù¸¥ tensorÀÇ µ¿ÀÏÇÑ Áö¼ö¸¦ ÀÚ½ÅÀÇ ´Ù¸¥ Áö¼ö·Î ´ëÄ¡ÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀÇ ¼ºÁúÀ» °®½À´Ï´Ù.
ex1) ¥ä𝑗𝑘 x𝑗 = x𝑘 ex2) ¥ä𝑖𝑚 ¥ä𝑗𝑛 T𝑚𝑛 = T𝑖𝑗
b) Permutation symbol(¼øÈ¯ ±âÈ£): 𝑒𝑖𝑗𝑘 = {1 (123, 231, 312), -1 (321, 213, 132), 0 (ÀÌ¿ÜÀÇ °æ¿ì)} [4.5.6]
ex) 𝑒𝑗𝑘𝑘 = e𝑗11 + 𝑒𝑗22 + 𝑒𝑗33 = 0 + 0 + 0 = 0. ¡ñ °¢±â ¸ðµÎ°¡ 'ÀÌ¿ÜÀÇ °æ¿ì'À̹ǷÎ
c) Tensor¿Í Cartesian ÁÂÇ¥°è:
ex) Carttesian ÁÂÇ¥°è 3Â÷¿ø 2Â÷ tensor *
Tensor ¥ò = [¥ò𝑖𝑗] =
⌈ ¥ò11 ¥ò12 ¥ò13 ⌉
¦¥ò21 ¥ò22 ¥ò23¦ (𝑖,𝑗 = 1,2,3) [4.5.12]
⌊ ¥ò31 ¥ò32 ¥ò33 ⌋
I-4 TensorÀÇ ±âº» ¿¬»ê
a) 5.1 Dot product (³»Àû)
a ∙ b = (a𝑖 𝐞𝑖) ∙ (b𝑗 𝐞𝑗) = a𝑖b𝑗 𝐞𝑖 ∙ 𝐞𝑗 = a𝑖b𝑗 ¥ä𝑖𝑗 = a𝑖b𝑖; ¥ä𝑖𝑗 ¡Õ 𝐞𝑖 ∙ 𝐞𝑗 <- kronecker delta Á¤ÀÇ [5.1.1-4]
b) 5.2 Cross product (¿ÜÀû)
a ⨯ b = (a𝑖 𝐞𝑗) ⨯ (b𝑗 𝐞𝑗) = a𝑖b𝑗 𝐞𝑖 ⨯ 𝐞𝑗 [5.2.1]
a ⨯ b =
∣ 𝐞1 𝐞2 𝐞3 ∣
∣ a1 a2 a3 ∣ = 𝑒𝑖𝑗𝑘 a𝑖b𝑗 𝐞𝑘 <- 𝐞𝑖 ⨯ 𝐞𝑗 = 𝑒𝑖𝑗𝑘 𝐞𝑘 [5.2.2,3]
∣ b1 b2 b3 ∣
c) 5.3 Triple dot product (»ïÁß ³»Àû)
(a ⨯ b) ∙ c =
∣ a1 a2 a3 ∣ ∣ a1 b1 c1 ∣
∣ b1 b2 b3 ∣ = ∣ a2 b2 c2 ∣ = 𝑒𝑖𝑗𝑘 a𝑖b𝑗c𝑘; 𝑒𝑖𝑗𝑘 ¡Õ (𝐞𝑖 ⨯ 𝐞𝑗) ∙ 𝐞𝑘 <- permutation symbol Á¤ÀÇ [5.3.1,2]
∣ c1 c2 c3 ∣ ∣ a3 b3 c3 ∣
I-5 (5.4,5) DyadÀÇ °³³ä°ú ¿¬»ê
a) Dyad¿Í dyad product(°ö) **
dyad¶õ µÎ vectorÀÇ °öÀ¸·Î ÀÌ·ç¾îÁø 2Â÷ tensor¸¦ ¸»Çϸç, ÀÌ °öÀ» dyad product¶ó ÇÕ´Ï´Ù. ¡æ a ⊗ b or a b [5.4.1,2]
dyad¶õ 2Â÷ tensor·Î¼ components¿Í basis dyad·Î ±¸¼ºµË´Ï´Ù. ¡æ a ⊗ b = a𝑖b𝑗 𝐞𝑖 ⊗ 𝐞𝑗 = T = T𝑖𝑗 𝐞𝑖 ⊗ 𝐞𝑗 [5.5.2]
b) Basis(±âÀú) dyad
°¢°¢ÀÇ identity basis(´ÜÀ§ ±âÀú) vectorÀÇ °öÀ̹ǷÎ,
ex) 𝐞1 ⊗ 𝐞2 =
⌈ 1 ⌉
¦0¦ [ 0 1 0 ] = (°á°ú: ¾Æ·¡ ÂüÁ¶) [5.4.6]
⌊ 0 ⌋
ÀüºÎ¸¦ °è»êÇßÀ» ¶§ °á°ú´Â... [5.4.7]
𝐞1 ⊗ 𝐞1 = 𝐞1 ⊗ 𝐞2 = 𝐞1 ⊗ 𝐞3 =
⌈ 1 0 0 ⌉ ⌈ 0 1 0 ⌉ ⌈ 0 0 1 ⌉
¦0 0 0¦ ¦0 0 0¦ ¦0 0 0¦
⌊ 0 0 0 ⌋ ⌊ 0 0 0 ⌋ ⌊ 0 0 0 ⌋
𝐞2 ⊗ 𝐞1 = 𝐞2 ⊗ 𝐞2 = 𝐞2 ⊗ 𝐞3 =
⌈ 0 0 0 ⌉ ⌈ 0 0 0 ⌉ ⌈ 0 0 0 ⌉
¦1 0 0¦ ¦0 1 0¦ ¦0 0 1¦
⌊ 0 0 0 ⌋ ⌊ 0 0 0 ⌋ ⌊ 0 0 0 ⌋
𝐞3 ⊗ 𝐞1 = 𝐞3 ⊗ 𝐞2 = 𝐞3 ⊗ 𝐞3 =
⌈ 0 0 0 ⌉ ⌈ 0 0 0 ⌉ ⌈ 0 0 0 ⌉
¦0 0 0¦ ¦0 0 0¦ ¦0 0 0¦
⌊ 1 0 0 ⌋ ⌊ 0 1 0 ⌋ ⌊ 0 0 1 ⌋
c) Identity(´ÜÀ§) dyad
I =
⌈ 1 0 0 ⌉
¦0 1 0¦ = ¥ä𝑖𝑗 𝐞𝑖 ⊗ 𝐞𝑗 = 𝐞𝑖 ⊗ 𝐞𝑖 [5.5.28]
⌊ 0 0 1 ⌋
d) 5.6 Dyad ¿¬»ê <- [Wikipedia] 'Dyadics' 'Tensor product' [link] <- ¡Ø ¾ÕÀ¸·Î ÀÚÁÖ ¾²ÀÓ.
∘ Dyad¿Í vector dot product: (a ⊗ b) ∙ c = a (b ∙ c), c ∙ (a ⊗ b) = (c ∙ a) b, a ∙ (b ⊗ c) ∙ d = (a ∙ b)(c ∙ d) [5.6.3]
∘ Dyad¿Í vector cross product: (a ⊗ b) ⨯ c = a (b ⨯ c), c ⨯ (a ⊗ b) = (c ⨯ a) b
∘ Dyad¿Í dyad dot product: (a ⊗ b) ∙ (c ⊗ d) = (b ∙ c) (a ⊗ d) [5.6.8]
∘ DyadÀÇ double dot product(ÀÌÁß Á¡°ö): (a ⊗ b) : (c ⊗ d) = (a ∙ c) (b ∙ d) [5.6.16]
I-6 TensorÀÇ Æ¯¼º°ú ¿¬»ê
a) 6.1 Tensor dot product
∘ Contraction(Ãà¾à): index(Áö¼ö)¸¦ Áߺ¹Çؼ ÇÕÇϸé order(Â÷¼ö)°¡ 2Â÷ ³·¾ÆÁü. ex) 𝐀 - 2Â÷ tensor, 𝐀𝑘𝑘- 0Â÷ tensor, scalar
2Â÷ tensorÀÇ dot product -> 2Â÷ tensor, 2Â÷ tensorÀÇ double product -> 0Â÷ tensor
∘ TensorÀÇ ¼ººÐ ±¸Çϱâ: ±× basis vector¸¦ dot productÇÔ. ex) 𝐀 ∙ 𝐞𝑖 = A𝑖𝑗 𝐞𝑖 ⊗ 𝐞𝑗∙ 𝐞𝑖 = A𝑖𝑗 𝐞𝑖 ¥ä𝑗𝑖 = A𝑖1+ A𝑖2+ A𝑖3 [6.1.22-4]
∘ 2Â÷ tensorÀÇ dot product: 𝐀2 = 𝐀 ∙ 𝐀, 𝐀3 = 𝐀 ∙ 𝐀 ∙ 𝐀 [6.1.33,34]
∘ double dot product: 𝐀 : 𝐁 = A𝑖𝑗 𝐞𝑖 ⊗ 𝐞𝑗 : B𝑘𝑙 𝐞𝑘 ⊗ 𝐞𝑙 = A𝑖𝑗B𝑘𝑙 (𝐞𝑖 ⊗ 𝐞𝑗 : 𝐞𝑘 ⊗ 𝐞𝑙) = A𝑖𝑗B𝑘𝑙 (𝐞𝑖 ∙ 𝐞𝑘)(𝐞𝑗 ∙ 𝐞𝑙) = A𝑖𝑗B𝑘𝑙 ¥ä𝑖𝑘 ¥ä𝑗𝑙 = A𝑖𝑗B𝑖𝑗
<- ¡ñ (a ⊗ b) : (c ⊗ d) = (a ∙ c) (b ∙ d); µÎ¹øÀÇ Ãà¾à ¼öÇà ÈÄ 0Â÷ tensor, scalar°¡ µÊ. [6.1.35-40]
b) 6.2 Identity(´ÜÀ§) tensor
∘ 2Â÷ identity tensor: 𝐈 = ¥ä𝑖𝑗 𝐞𝑖 ⊗ 𝐞𝑗, 𝐈 ∙ 𝐚 = 𝐚 [6.2.6,10]
∘ Trace(´ë°¢ÇÕ): 𝐀 : 𝐈 = tr(𝐀) ¡Õ 𝐀𝑘𝑘 = 𝐀11 + 𝐀22 + 𝐀33 [6.2.11]
tr(𝐀) = tr(𝐀T) = A𝑖𝑖, 𝐀 : 𝐁 = A𝑖𝑗B𝑖𝑗, tr(𝐀2) = tr(𝐀 ∙ 𝐀) = 𝐀 ∶ 𝐀 = A𝑖𝑗A𝑖𝑗 [6.2.12-15]
∘ TensorÀÇ Å©±â: ¡«𝐀¡«= ¡î (𝐀 : 𝐀) = ¡î tr(𝐀2) = ¡î A𝑖𝑗A𝑖𝑗 [6.2.17,18]
c) 6.3 TensorÀÇ inverse(¿ª)
∘ Tensor¿Í matrix(Çà·Ä): tensorÀÇ inverse 𝐀-1 or [A𝑖𝑗]-1, 𝐀 ∙ 𝐀-1 = 𝐈 <- 2Â÷ identity(´ÜÀ§) tensor [6.3.1,2]
∘ Determinant: det 𝐀, minor determinant: 𝑀𝑖𝑗, cofactor: Ȃ = (-1)𝑖+𝑗 𝑀𝑖𝑗 [6.3.5,6]
det 𝐀T = det 𝐀, det (𝐀 𝐁) = (det 𝐀) (det 𝐁), det 𝐀-1 = 1 / det 𝐀 [6.3.12-14]
∘ Inverse matrix(¿ªÇà·Ä): 𝐀-1 = (Ȃ)T/ det 𝐀 <- ¡Ø Áß¿äÇÔ; (𝐀-1)-1 = 𝐀, (𝐀T)-1 = (𝐀-1)T [6.3.12]
∘ Orthogonal(Á÷±³) tensor : 𝐀-1 = 𝐀T, 𝐀 ∙ 𝐀-1 = 𝐀 ∙ 𝐀T = 𝐈 [6.3.25,26]
d) 6.4 Eigenvalue(°íÀµ°ª)ÀÇ ¹®Á¦>
(𝐀 - ¥ë𝐈) ∙ 𝐱 = 0 ¥ë: eigenvalue, 𝐱: eigenvector , 𝐈: identity vector [6.4.1]
det (𝐀 - ¥ë𝐈) = 0 [6.4.2]
¥ë3 - 𝐼 ¥ë2 + 𝐼𝐼 ¥ë2 - 𝐼𝐼𝐼 = 0 [6.4.3]
𝐼 = tr𝐀 = A 𝑖𝑖 , 𝐼𝐼 = 1/2[(tr𝐀)2 - (tr(𝐀2)] = 1/2[(A𝑖𝑖 A𝑗𝑗 - A𝑖𝑗 A𝑖𝑗)], 𝐼𝐼𝐼 = det 𝐀 = 𝑒𝑖𝑗𝑘 A1𝑖 A2𝑗 A3𝑘 [6.4.5,6] ***
e) 6.5 Determinant¿Í permutaion symbol(¼øÈ¯ ±âÈ£)
∘ det 𝐀 = det[A𝑖𝑗] = 𝑒𝑖𝑗𝑘 A1𝑖 A2𝑗A3𝑘 = 𝑒𝑖𝑗𝑘 A𝑖1A𝑗2A𝑘3 [6.5.2]
∘ (𝐚 ⨯ 𝐛 ∙ 𝐜)(𝐝 ⨯ 𝐞 ∙ 𝐟) = <- ¡Ø II-6 f)¿¡¼ »ç¿ë; det 𝐀T = det 𝐀, det (𝐀 𝐁) = (det 𝐀) (det 𝐁) Ȱ¿ë [6.5.25]
∣ 𝑎1 𝑎2 𝑎3 ∣ ∣ 𝑑1 𝑒1 𝑓1 ∣ ∣ 𝐚 ∙ 𝐝 𝐚 ∙ 𝐞 𝐚 ∙ 𝐟 ∣
∣ 𝑏1 𝑏2 𝑏3 ∣ ∣ 𝑑2 𝑒2 𝑓2 ∣ = ∣ 𝐛 ∙ 𝐝 𝐛 ∙ 𝐞 𝐛 ∙ 𝐟 ∣
∣ 𝑐1 𝑐2 𝑐3 ∣ ∣ 𝑑3 𝑒3 𝑓3 ∣ ∣ 𝐜 ∙ 𝐝 𝐜 ∙ 𝐞 𝐜 ∙ 𝐟 ∣
p.s. ÃÖ´ö±â Àú <ÅÙ¼ ÇØ¼® °³·Ð> (¹üÇѼÀû 2003)À» ÅØ½ºÆ®·Î ÆíÁýÇϰí, ÀϺΠ¿À·ù/¿ÀŸµéÀ» ¼öÁ¤ÇßÀ½.
¸î°¡Áö¸¦ °ËÅäÇÑ ³¡¿¡ ¼±ÅÃÇÑ ÀÌ Ã¥ÀÌ ´Ù¸¥ ¿µ¹®Ã¥/¹ø¿ªÆÇµéº¸´Ù ÀÌÇØ°¡ ½¬¿ì¸é¼µµ ½Ç¿ëÀûÀÎ µíÇßÀ½.
¿¹Á¦ Ãß°¡¿Í Ipad À§ÁÖÀÇ Çà·Ä°ú determinant Ç¥±â ¼öÁ¤ µî Àü¹ÝÀûÀ¸·Î ¾÷µ¥ÀÌÆ®ÇÔ. [u. 10/2019]
*, ** »ó´ë¼º ÀÌ·ÐÀº ½Ã°£ Â÷¿øÀ» Æ÷ÇÔÇÑ 4Â÷¿ø 2Â÷ tensorÀÎ 4-vector dyad¸¦ »ç¿ëÇÔ.
*** ¿À·§µ¿¾È ¹æÄ¡Çß´ø ¿ÀŸ¸¦ ¼öÁ¤ÇßÀ½. [u. 5/2020] |
|
|