±âº» ÆäÀÌÁö Æ÷Æ®Æú¸®¿À ´ëÇѹα¹ÀÇ ÀüÅë°ÇÃà Áß±¹°ú ÀϺ»ÀÇ ÀüÅë°ÇÃà ¼­À¯·´°ú ¹Ì±¹ÀÇ °ÇÃà ±¹¿ª û¿À°æ Çö´ë ¿ìÁÖ·Ð ´ëÇѹα¹ÀÇ »êdz°æ ¹éµÎ´ë°£ Á¾ÁÖ»êÇà ³×ÆÈ È÷¸»¶ó¾ß Æ®·¹Å· ¸ùºí¶û Áö¿ª Æ®·¹Å· ¿ä¼¼¹ÌƼ ij³â µî Ƽº£Æ® ½ÇÅ©·Îµå ¾ß»ý »ý¹° ÆÄ³ë¶ó¸¶»çÁø °¶·¯¸® Ŭ·¡½Ä ·¹ÄÚµå °¶·¯¸® AT Æ÷·³ Æ®·¹Å· Á¤º¸ ¸µÅ©


 ·Î±×ÀÎ  È¸¿ø°¡ÀÔ

Ư¼ö»ó´ë¼º I-2. ·Î·»Ã÷ º¯È¯
    ±è°ü¼®  2018-07-02 00:19:56, Á¶È¸¼ö : 550
- Download #1 : lorentz.jpg (73.2 KB), Download : 3



4.1  ·Î·»Ã÷ º¯È¯(Lorentz Transformation)

°ü¼º°è K(K system)¿Í °ü¼º°è K'(K' system)»çÀ̸¦ ¿¬°áÇÏ´Â º¯È¯¹ýÄ¢Àº ds©÷ = -c©÷dt©÷ + dx©÷ + dy©÷ + dz©÷ = -c©÷dt'©÷ + dx'©÷ + dy'©÷ + dz'©÷ ÀÔ´Ï´Ù.
°ü¼º°è°£¿¡ ÀÌ ½Ã°ø°£ 4Â÷¿øÀÇ ºñÀ¯Å¬¸®µåÀûnon-Euclidiean ¼±¿ä¼ÒÀÎ ÀÌ ds¸¦ º¸Á¸ÇÏ´Â º¯È¯(transformation)ÀÇ Áß¿äÇÑ ¿¹°¡ ·Î·»Ã÷ ºÎ½ºÆ®(Lorentz Boosts)ÀÔ´Ï´Ù.
À§ ù¹øÂ° ±×¸²Àº ½Ã°ø°£ ´ÙÀ̾Ʊ׷¥¿¡¼­ Áº¯ÀÇ º¯È­·Î¼­ÀÇ ·Î·»Ã÷ ºÎ½ºÆ®·Î¼­ ÀÌ´Â (ct,x) Æò¸é¿¡¼­ÀÇ È¸Àü»ó»ç(analogs of rotations)¸¦ »ìÆìº¸±â·Î ÇսôÙ.
±×·¡¼­ ÀÌ °ü°è´Â ½Ã°ø°£ÀÇ ºñÀ¯Å¬¸®µåÀûÀÎ ¼º°ÝÀ¸·Î ÀÎÇØ ½Ö°î¼±ÇÔ¼ö(hyperbolic functions)ÀÇ °ü°è·Î ³ªÅ¸³ª°Ô µÇ´Â °ÍÀÔ´Ï´Ù. Áï,

ct' = (cosh¥è)(ct) - (sinh¥è)x            <4-1a> <-  ¥è(Theta ¼¼Å¸) ¼Ò¹®ÀÚ
x' = (-sinh¥è)(ct) + (cosh¥è)x           <4-1b>
y' = y, z' = z                                      <4-1c> <- Æò¸é¿¡¼­ ±âÇÏÇÐÀûÀ¸·Î ³ªÅ¸³»±â À§Çؼ­ y¿Í z´Â º¯ÇÏÁö ¾Ê´Â °æ¿ì¸¦ °í·ÁÇÔ.

* ½Ö°î¼±ÇÔ¼ö´Â 2Â÷¿ø Æò¸é»ó¿¡¼­ ¸Å°³º¯¼ö ¥è¸¦ »ç¿ëÇÑ ÀÚÃë·Î (cosh¥è, sinh¥è)Àº ½Ö°î¼± x©÷ - y©÷ = 1 À» ±×¸®¸ç cosh©÷¥è - sinh©÷¥è= 1 ÀÓ.

(ds)©÷ = -(cdt')©÷ + (dx')©÷ + (dy')©÷ + (dz')©÷
        =  -[cosh¥è(cdt) - sinh¥è(dx)]©÷ +[-sinh¥è(cdt) + cosh¥è(dx)]©÷ + (dy)©÷ + (dz)©÷
        = -(cdt)©÷  + (dx)©÷  + (dy)©÷  + (dz)©÷         

V = c(tanh¥è)              <4-2a> : °ü¼º°è K'ÀÇ ¼Óµµ  <-  x'=0 ÀÏ ¶§ <2-1b>¿¡¼­ 0 = (-sinh¥è)(ct) + (cosh¥è)x,  tanh¥è = sinh¥è/ cosh¥è, V = x/t
tanh¥è = V/c               <4-2b>  <- sinh¥è = V/c /¡î (1-V©÷/c©÷), cosh¥è = 1 /¡î (1-V©÷/c©÷)

¥ã = 1/¡î (1-V©÷/c©÷)        <4-3>   <-  ¥ã(Gamma °¨¸¶) ¼Ò¹®ÀÚ, cosh¥è °ª, Ç¥±â °£¼ÒÈ­¸¦ ·òÇØ µµÀÔµÊ.

t' = ¥ã (t - Vx/c©÷)         <4-4a>
x' = ¥ã (x - Vt)             <4-4b>
y' = y, z' = z              <4-4c>

t = ¥ã (t' + Vx'/c©÷)        <4-5a>
x= ¥ã (x' + Vt')             <4-5b>
y= y', z = z'                <4-5c>

V/c ¡ì 1 (V°¡ ±¤¼Óº¸´Ù ¾ÆÁÖ ÀÛÀ» ¶§):  x = x' + Vt, y = y', z = z', t = t' + (V/c©÷)x'    <4-6>   <- ±Ù»ç½Ä

À§ µÎ¹øÂ° ±×¸²Àº ¿¹·Î¼­ °ü¼º°è K'¿¡¼­ µ¿½ÃÀÎ »ç°Çµé(events) A¿Í B°¡, K syetem¿¡¼­´Â A»ç°Ç ÀÌÈÄ¿¡ B°¡ ÀϾ´Ù´Â °ÍÀ» º¸¿©ÁÖ°í ÀÖ½À´Ï´Ù.

∆t = ¥ã (V/c©÷)∆x'           <4-7>   <-  ∆t' = 0,  ∆x' = x'B - x'A , <4-5a> : µ¿½Ã¼ºÀÇ »ó´ë¼º(the relativity of simultaneity) [Hartle p.73]   

À§ ¼¼¹øÂ° ±×¸²Àº ±æÀÌÀÇ ·Î·»Ã÷ ¼öÃà(Lorentz Contraction)À» º¸¿© ÁÖ´Â °ÍÀ¸·Î K system¿¡¼­ L₀ ÀÎ ¸·´ërod°¡ K' system¿¡¼­´Â ¾î¶»°Ô µÉ±îÇÏ´Â °ÍÀÔ´Ï´Ù.
K system¿¡¼­ L₀ ¶³¾îÁø Á¡ÀÌ K' system¿¡¼­ t' = 0, x'Ãà¿¡ ÀÖÀ¸¸é¼­ c∆t¸¸Å­ À̵¿ÇÑ °Å¸® LÀε¥ ±æ°Ô º¸À̳ª ºñÀ¯Å¬¸®µå ±âÇÏÀÌ¶ó¼­ ½ÇÁ¦·Î´Â ´õ ª½À´Ï´Ù.

L = L₀ ¡î (1-V©÷/c©÷)        <4-8>   <- <4-5b>,  ∆x = L₀ = ¥ã ∆x',  ∆x' = L = 1/¥ã ∆x = 1/¥ã L₀  : ·Î·»Ã÷ ¼öÃà(Lorentz Contraction) [Hartel p.70]                                
∆t' = ∆t ¡î (1-V©÷/c©÷)      <4-9>  <-  <4-5a>, ∆t = t©ü- t©û¸¦ ´ëÀÔÇÏ¿© Á¤¸®ÇØ º¸¸é <3-3>°ú ÀÏÄ¡ÇÔ! ½Ã°£ ÆØÃ¢(time dilation) [Landau-lifshitz p.12]

4.2  ¼ÓµµÀÇ º¯È¯(Transformation of Velocities)

À̹ø¿¡´Â K system¿¡¼­ xÃàÀ» µû¶ó ¼Óµµ V·Î ¿òÁ÷ÀÌ´Â K' system¿¡¼­´Â ¹°Áú ÀÔÀÚÀÇ ¼Óµµ°¡ ¾î¶»°Ô º¸ÀÌ´Â °¡ÇÏ´Â ¼Óµµ º¯È¯ °ø½ÄÀ» »ìÆìº¸±â·Î ÇÕ´Ï´Ù.
K system¿¡¼­ ÀÔÀÚ ¼ÓµµÀÇ °¢ x, y, z ¼ººÐÀ» °¢ 𝑉x, 𝑉y, 𝑉z¶ó Çϰí K' system¿¡¼­ÀÇ ÀÔÀÚ¼Óµµ¸¦ °¢ 𝑉x', 𝑉y', 𝑉z'¶ó Çϸé <4-5a, 5b, 5c>¿¡¼­,
dt = ¥ã (dt' + V dx'/c©÷),  dx= ¥ã (dx' + V dt'),  dy= dy',  dz = dz',  ¥ã = 1/¡î (1 - V©÷/c©÷),  dt/dx = 𝑉x À̹ǷÎ

𝑉x =[𝑉x' + V]/[1 + 𝑉x'* V/c©÷]                   <4-10a>
𝑉y = 𝑉y' ¡î (1 - V©÷/c©÷) /[1 + 𝑉x'* V/c©÷]       <4-10b>
𝑉z = 𝑉z' ¡î ( 1- V©÷/c©÷) /[1 + 𝑉x'* V/c©÷]       <4-10c>

𝑉x' =[𝑉x - V]/[1 - 𝑉x* V/c©÷]                    <4-11a>
𝑉y' = 𝑉y ¡î (1 - V©÷/c©÷) /[1 - 𝑉x* V/c©÷]        <4-11b>
𝑉z' = 𝑉z ¡î (1 - V©÷/c©÷) /[1 - 𝑉x* V/c©÷]        <4-11c>

¿¹·Î¼­ ¸¸ÀÏ K system¿¡¼­ ÇÑ ÀÔÀÚ°¡ xÃàÀ» µû¶ó¼­ ±¤¼Ó c·Î ¿òÁ÷ÀÎ´Ù¸é »ó´ë¼Óµµ V·Î ¿òÁ÷ÀÌ´Â k' system¿¡¼­´Â ¾î¶»°Ô º¸ÀÏ±î »ý°¢ÇØ º¸±â·Î ÇսôÙ.
<5-2a>¿¡ 𝑉x = c ¸¦ ´ëÀÔÇØº¸¸é ¹Ù·Î ¾Ë ¼ö Àִ¹٠𝑉x' = (c - V) / (1 - c* V/c©÷) = c. µû¶ó¼­, ±¤¼ÓÀº ¸ðµç °ü¼º°è¿¡¼­ µ¿ÀÏÇÑ °ÍÀÔ´Ï´Ù!  

Âü°í¹®Çå Landau, L.D.; Lifshitz, E.M. (1980)[1939] The Classical Theory of Fields (4th ed.) Butterworth-Heinemann            
               Hartle, J.B. (2003) Gravity: An Introduction to Einstein¡¯s General Relativity, Addison-Wesley

p.s. ·Î·»Ã÷ º¯È¯ÀÇ ´õ »ó¼¼ÇÑ °úÁ¤ÀÌ ÇÊ¿äÇϸé ÀÌÀÇ ¿øÀüÀÎ Landau-LifshitzÃ¥ The Lorentzy transformation pp.9-12 À» ÂüÁ¶ ¹Ù¶÷.
       Landau-LifshitzÃ¥Àº Hartle°ú ´Þ¸® ½Ã°£²Ã °£°Ý(timelike interval)ÀÎ ds©÷ = c©÷dt©÷ - dx©÷ - dy©÷ - dz©÷ ¸¦ »ç¿ëÇÏ´Â Â÷À̰¡ ÀÖÀ½.
     


Name
Spamfree

     ¿©±â¸¦ Ŭ¸¯ÇØ ÁÖ¼¼¿ä.

Password
Comment

  ´ä±Û¾²±â   ¸ñ·Ïº¸±â
¹øÈ£ Á¦               ¸ñ À̸§ ¿¬°ü ³¯Â¥ Á¶È¸
90          Mathematical Cosmology 5. Inflationary cosmology    ±è°ü¼® 6 2020-06-07
16:23:00
5884
89            Mathematical Cosmology 6. Perturbations    ±è°ü¼® 6 2020-06-07
16:23:00
5884
88  Hobson Efstathiou Lasenby GR 11a. Schwartzschild ºí·¢È¦  🔴  [2]  ±è°ü¼® 3 2020-05-13
13:44:21
17806
87    Hobson et al. GR 11b. Áß·ÂÀÇ ºØ±«, ºí·¢È¦ Çü¼º    ±è°ü¼® 3 2020-05-13
13:44:21
17806
86      Hobson et al. GR 11c. ¿úȦ, Hawking È¿°ú    ±è°ü¼® 3 2020-05-13
13:44:21
17806
85  Hobson Efstathiou Lasenby GR 19. GRÀÇ º¯ºÐÀû Á¢±Ù    ±è°ü¼® 1 2020-04-16
07:13:39
576
84  Dirac's GR 35. ¿ìÁÖÇ× [u. 3/2020]   🔵  [3]  ±è°ü¼® 1 2020-01-22
08:59:01
3680
83  1/20 ±º¾÷¸®¿¡¼­ º» Orion ¼º¿î^^    ±è°ü¼® 1 2020-01-20
23:28:21
471
82  º¤ÅÍ¿Í ÅÙ¼­ 6. ÅÙ¼­ ÀÀ¿ë [u. 1/2020]    ±è°ü¼® 1 2020-01-01
19:32:21
575
81  2019³â ³ëº§¹°¸®Çлó - PeeblesÀÇ ¹°¸®Àû ¿ìÁַР  ✅    ±è°ü¼® 1 2019-10-14
19:30:49
1239
80  ÀϹݻó´ë¼º(GR) 1. µî°¡¿ø¸®; Á߷°ú °î·ü   🔵    ±è°ü¼® 5 2019-09-06
09:38:00
5126
79    ÀϹݻó´ë¼º 2. Newton Á߷·РÀç°ËÅä    ±è°ü¼® 5 2019-09-06
09:38:00
5126
78      ÀϹݻó´ë¼º 3. Ư¼ö»ó´ë¼º; ÃøÁö¼±    ±è°ü¼® 5 2019-09-06
09:38:00
5126
77        ÀϹݻó´ë¼º 4. Einstein À广Á¤½Ä ***    ±è°ü¼® 5 2019-09-06
09:38:00
5126
76          ÀϹݻó´ë¼º 5. Schwarzschild ÇØ    ±è°ü¼® 5 2019-09-06
09:38:00
5126
75  ¹ÌºÐ±âÇÏÇÐ 1. °î¼±; Gauss °î·ü; °î¸é  🔵    ±è°ü¼® 4 2019-06-16
16:55:58
5359
74    ¹ÌºÐ±âÇÏÇÐ 2. Á¦Àϱ⺻Çü½Ä; Á¦À̱⺻Çü½Ä    ±è°ü¼® 4 2019-06-16
16:55:58
5359
73      ¹ÌºÐ±âÇÏÇÐ 3. Gauss °î·ü II; ÃøÁö¼± [u. 12/2019]  [1]  ±è°ü¼® 4 2019-06-16
16:55:58
5359
72        ¹ÌºÐ±âÇÏÇÐ 4. Riemann °î·üÅÙ¼­; ´Ù¾çü    ±è°ü¼® 4 2019-06-16
16:55:58
5359
71  5/28 ±º¾÷¸®¿¡¼­ ÀºÇϼö ÃÔ¿µ^^    ±è°ü¼® 1 2019-05-30
01:20:31
850
70  ÅÙ¼­ ÇØ¼® I-1. Dyad¿Í ÅÙ¼­ÀÇ ¿¬»ê  🔵    ±è°ü¼® 5 2019-07-02
16:01:21
6028
69    ÅÙ¼­ ÇØ¼® I-2. ÅÙ¼­ ¹ÌÀûºÐ; ÁÂÇ¥º¯È¯ I    ±è°ü¼® 5 2019-07-02
16:01:21
6028
68      ÅÙ¼­ ÇØ¼® II-1. ÀÏ¹Ý ÁÂÇ¥°è ÅÙ¼­ÀÇ ¿¬»ê    ±è°ü¼® 5 2019-07-02
16:01:21
6028
67        ÅÙ¼­ ÇØ¼® II-2. ÁÂÇ¥º¯È¯ II; ÀÏ¹Ý ÁÂÇ¥°è ¹ÌºÐ    ±è°ü¼® 5 2019-07-02
16:01:21
6028
66          ÅÙ¼­ ÇØ¼® II-3. ÀÏ¹Ý ÁÂÇ¥°è ÀûºÐ; ÀÀ¿ë    ±è°ü¼® 5 2019-07-02
16:01:21
6028
65  VerlindeÀÇ 'Á߷°ú ¿ìÁÖÀÇ ¾ÏÈæ ...' (°­¿¬)    ±è°ü¼® 1 2019-02-03
21:27:44
680
64  »ó´ë¼º ÀÌ·Ð(SR/GR)ÀÇ ÇнÀ °úÁ¤    ±è°ü¼® 1 2018-07-15
15:31:25
671
63  Æ¯¼ö»ó´ë¼º(SR) I-1. °£°Ý; ½Ã°£ ÆØÃ¢  🔴    ±è°ü¼® 4 2018-07-05
06:34:56
25305
   Ư¼ö»ó´ë¼º I-2. ·Î·»Ã÷ º¯È¯    ±è°ü¼® 4 2018-07-05
06:34:56
25305
61      Ư¼ö»ó´ë¼º ¿ªÇÐ II-1. 4-º¤ÅÍ; µ¿·ÂÇÐ [u. 3/2021]    ±è°ü¼® 4 2018-07-05
06:34:56
25305
60        Ư¼ö»ó´ë¼º ¿ªÇÐ II-2. ÃøÁö¼±; ±¤¼± µî    ±è°ü¼® 4 2018-07-05
06:34:56
25305
59  Maxwell ¹æÁ¤½Ä°ú ÀüÀÚ±âÆÄÀÇ ¼Óµµ  🔵    ±è°ü¼® 1 2018-06-22
00:35:54
4545
58  »ç½Ê³â¸¸ÀÇ ¼öÇÐ ÀçÇнÀ^^   ✅  [3]  ±è°ü¼® 1 2018-04-21
18:16:20
1005
57  Çö´ë ¿ìÁÖ·Ð ÀÔ¹®¼­    ±è°ü¼® 2 2018-04-23
18:39:44
605
56    Á¦1¼¼´ëÀÇ Çö´ë ¿ìÁÖ·Ð    ±è°ü¼® 2 2018-04-23
18:39:44
605
55  ÀϹݻó´ë¼º(GR) ÀÔ¹®¼­  [1]  ±è°ü¼® 2 2018-04-23
21:51:07
985

    ¸ñ·Ïº¸±â   ÀÌÀüÆäÀÌÁö   ´ÙÀ½ÆäÀÌÁö     ±Û¾²±â [1][2] 3 [4][5]
    

Copyright 1999-2025 Zeroboard / skin by zero & Artech