기본 페이지 포트폴리오 대한민국의 전통건축 중국과 일본의 전통건축 서유럽과 미국의 건축 국역 청오경 현대 우주론 대한민국의 산풍경 백두대간 종주산행 네팔 히말라야 트레킹 몽블랑 지역 트레킹 요세미티 캐년 등 티베트 실크로드 야생 생물 파노라마사진 갤러리 클래식 레코드 갤러리 AT 포럼 트레킹 정보 링크


 로그인  회원가입

Wave (3c) Wave packets and dispersion
    김관석  2024-04-04 09:01:37, 조회수 : 49
- Download #1 : Wa_Fig_3cs.jpg (433.4 KB), Download : 0



          3.4 Wave packets and dispersion    

   Consider what would happen if the frequency components that make up the waveform (called a "wave packet" if it's localized in time and space) had different speeds. We can see an example of that in Fig. 3.24.. Three frequency components have the right amplitude and frequency to add up to a square(ish) pulse at some initial location and time. But at a different location the relative phase between the component waves will be different. We can see the result of that change in relative phase in the bottom-right portion of the Fig. 3.24.: The shape of the resultant waveform changes over distance.
   This effect is called "dispersion". And when dispersion is present, the speed of each indivisual frequency component is called the phase velocity or phase spees of the component, and the speed of the wave packet's envelope is called the "group velocity" or group speed.(4) In order to undestand the group velocity of a wave packet, look at an example shown in Fig. 3.25. Here the two component waves start off in phase and produce a large resultant wave. When the two component waves have slightly different frequencies and the amplitude of the resultant waveform varies as it does in Fig. 3.25, and the waveform is said to be "modulated", and this particular type of modulation is called "beats". The modulation envelope shown here provides a convenient way to determine the group velocity of a wave packet. To see how that works, write the phase of them as 𝜙 = 𝑘𝑥 - 𝜔𝑡,
            𝜙1 = 𝑘1𝑥 - 𝜔1𝑡,     𝜙2 = 𝑘2𝑥 - 𝜔2𝑡.        
This means that the phase difference between the wave is
            𝛥𝜙 = 𝜙2 - 𝜙1 = (𝑘2𝑥 - 𝜔2𝑡) - (𝑘1𝑥 - 𝜔1𝑡) = (𝑘2 - 𝑘1)𝑥 - (𝜔2 - 𝜔1)𝑡.
To determine how fast that envelope moves, consider what happen over a small increment of time (𝛥𝑡) and distance (𝛥𝑥). If we are following a point on the resultant wave, the relative phase between thee two component must be the same. So whatever change occurs due to the passage of time 𝛥𝑡 must be compensated for by a phase change due to a change in 𝛥𝑥. his means that
    (3.36)   (𝑘2 - 𝑘1)𝛥𝑥 = (𝜔2 - 𝜔1)𝛥𝑡     or     𝛥𝑥/𝛥𝑡 =  (𝜔2 - 𝜔1)/(𝑘2 - 𝑘1).
This is the group velocity for two components. And a far more general expression can be found with wavenumbers clustered around an average waenumber 𝑘a by expanding 𝜔(𝑘) in a Taylor series:
           𝜔(𝑘) = 𝜔(𝑘a) + 𝑑𝜔/𝑑𝑘 ∣𝑘=𝑘a(𝑘 - 𝑘a) + 1/2! 𝑑2𝜔/𝑑𝑘2𝑘=𝑘a(𝑘 - 𝑘a)2 + ⋅ ⋅ ⋅ .
For the case in wich the difference between the wavenumber is small, the higher-order terms of the expression are negligible, so we have
           𝜔(𝑘) ≈ 𝜔(𝑘a) + 𝑑𝜔/𝑑𝑘 ∣𝑘=𝑘a(𝑘 - 𝑘a)     or    [𝜔(𝑘) - 𝜔(𝑘a)]/(𝑘 - 𝑘a) ≈ 𝑑𝜔/𝑑𝑘 ∣𝑘=𝑘a.    
Thus 
           𝑣group = [𝜔(𝑘) - 𝜔(𝑘a)]/(𝑘 - 𝑘a) ≈ 𝑑𝜔/𝑑𝑘∣𝑘=𝑘a.
So the group velocity of a wave packet is 𝑣group = 𝑑𝜔/𝑑𝑘 and the phase velocity of a wave component is 𝑣phase = 𝜔/𝑘.
   When dealing with dispersion, we are to encounter graphs in which 𝜔 is plotted on the vertical axis and 𝑘 is on the horizontal. If no dispersion is present, then the wave angular frequency 𝜔 is related to the wavenumber 𝑘 by 𝑘 = 𝑐1𝑘 where 𝑐1 represents the speed of propagation. In this the case, he dispersion plot is linear, as shown in Fig. 3.26. In the non-dispersive case, the phase velocity 𝜔/𝑘 is the same at all values of 𝑘 and is the same as the group velocity 𝑑𝜔/𝑑𝑘.
   When dispersion is present, the relationship between the phase velocity and the group velocity depends on the nature of the dispersion. In one important case pertaining to quantum waves, the angular frequency is proprtional to the square of the wavenumber (𝜔 = 𝑐2𝑘2) as in Fig. 3.27.
In this case the phase velocity and group velocity are
           𝑣phase = 𝜔/𝑘 = 𝑐2𝑘2/𝑘 = 𝑐2𝑘
           𝑣group = 𝑑𝜔/𝑑𝑘 = 𝑑(𝑐2𝑘2)/𝑑𝑘 = 2𝑐2𝑘,
which is the twice the phase velocity as in as in Fig. 3.28. Notice that 𝑣group is increasing twice as big as 𝑣phase.
                                                              
(4) Since velocity is a vector, phase and group velocity should include the direction, but in this context speed and velocity are used interchangeably.

* Textbook: D. Fleisch & J. Kinnaman A Student's Guide to Waves (Cambridge University Press 2015)


Name
Spamfree

     여기를 클릭해 주세요.

Password
Comment

  답글쓰기   목록보기
번호 제               목 이름 연관 날짜 조회
공지  '현대 우주론'에 관한 탐구의 장    관리자 1 2017-08-15
11:36:55
1246
공지  위키백과 업데이트: 로저 펜로즈  ✅   [1]  김관석 1 2021-09-28
06:56:21
2046
127  Wave (1) Wave fundamentals    김관석 8 2024-05-07
09:24:42
404
126    Wave (2) The wave equation    김관석 8 2024-05-07
09:24:42
404
125      Wave (3a) General solution; Boundary conditions    김관석 8 2024-05-07
09:24:42
404
124        Wave (3b) Fourier theory    김관석 8 2024-05-07
09:24:42
404
         Wave (3c) Wave packets and dispersion    김관석 8 2024-05-07
09:24:42
404
122            Wave (4) Mechanical wave equation  ✍️ (proofreading)    김관석 8 2024-05-07
09:24:42
404
121              Wave (5) Electromagnetic wave equation  ✍️ (proofreading)    김관석 8 2024-05-07
09:24:42
404
120                Wave (6) Quantum wave equation  ✍️ (proofreading)    김관석 8 2024-05-07
09:24:42
404
119  Gravirational Collapse and Space-Time Singuarities  📚    김관석 1 2023-06-12
13:50:03
152
118  Mathematics of Astronomy  (1) Gravity; Light    김관석 4 2023-05-02
08:31:40
907
117    Mathematics of Astronomy  (2) Parallax, angular size etc.      김관석 4 2023-05-02
08:31:40
907
116      Mathematics of Astronomy  (3) Stars    김관석 4 2023-05-02
08:31:40
907
115        Mathematics of Astronomy  (4) Black holes & cosmology    김관석 4 2023-05-02
08:31:40
907
114   Still의 <블록으로 설명하는 입자물리학>      김관석 3 2022-04-14
18:49:01
848
113    Becker의 <실재란 무엇인가?>    김관석 3 2022-04-14
18:49:01
848
112      Penrose의 <시간의 순환> (강추!) [u. 5/2023]  🌹    김관석 3 2022-04-14
18:49:01
848
111  일반상대성(GR) 학습에 대하여..    김관석 1 2022-01-03
09:49:28
303
110  HTML(+) 리뷰/홈페이지 운용^^  [1]  김관석 1 2021-11-08
16:52:09
205
109  Peebles의 Cosmology's Century (2020)    김관석 1 2021-08-16
21:08:03
386
108  <한권으로 충분한 우주론> 외  ✅    김관석 5 2021-06-06
13:38:14
2056
107    Rovelli의 <보이는 세상은 실재가 아니다>    김관석 5 2021-06-06
13:38:14
2056
106      Smolin의 <양자 중력의 세가지 길>    김관석 5 2021-06-06
13:38:14
2056
105        Susskind의 <우주의 풍경> (강추!)  🌹    김관석 5 2021-06-06
13:38:14
2056
104          대중적 우주론 추천서 목록 [u. 9/2021]  [1]  김관석 5 2021-06-06
13:38:14
2056
103  Zel'dovich's Relativistic Astrophysics  ✅    김관석 1 2021-04-01
08:16:42
1200
102  Dirac Equation and Antimatter    김관석 1 2021-03-15
12:49:45
532
101  11/30 태양 흑점 sunspots    김관석 2 2020-11-30
16:14:27
965
100    Coronado PST 태양 사진^^    김관석 2 2020-11-30
16:14:27
965
99  Linde's Inflationary Cosmology [u. 1/2021]    김관석 1 2020-11-06
09:19:06
530
98  The Schrödinger Equation [완료] (7) Harmonic Oscillator  ✅    김관석 1 2020-09-17
21:43:31
2686
97  우주론의 명저 Weinberg의 <최초의 3분>  ✅    김관석 3 2020-08-09
11:37:44
1334
96    물리학도를 위한 우주론서는?    김관석 3 2020-08-09
11:37:44
1334
95      우주론의 최고, 최신, 고전서..    김관석 3 2020-08-09
11:37:44
1334
94   Mathematical Cosmology I. Overview  🔵    김관석 6 2020-06-07
16:23:00
4438

    목록보기   다음페이지     글쓰기 1 [2][3][4]
    

Copyright 1999-2024 Zeroboard / skin by zero & Artech