±âº» ÆäÀÌÁö Æ÷Æ®Æú¸®¿À ´ëÇѹα¹ÀÇ ÀüÅë°ÇÃà Áß±¹°ú ÀϺ»ÀÇ ÀüÅë°ÇÃà ¼­À¯·´°ú ¹Ì±¹ÀÇ °ÇÃà ±¹¿ª û¿À°æ Çö´ë ¿ìÁÖ·Ð ´ëÇѹα¹ÀÇ »êdz°æ ¹éµÎ´ë°£ Á¾ÁÖ»êÇà ³×ÆÈ È÷¸»¶ó¾ß Æ®·¹Å· ¸ùºí¶û Áö¿ª Æ®·¹Å· ¿ä¼¼¹ÌƼ ij³â µî Ƽº£Æ® ½ÇÅ©·Îµå ¾ß»ý »ý¹° Æijë¶ó¸¶»çÁø °¶·¯¸® Ŭ·¡½Ä ·¹ÄÚµå °¶·¯¸® AT Æ÷·³ Æ®·¹Å· Á¤º¸ ¸µÅ©


 ·Î±×ÀÎ  È¸¿ø°¡ÀÔ

Waves  3c. Wave packets and dispersion
    ±è°ü¼®  2024-04-04 09:01:37, Á¶È¸¼ö : 91
- Download #1 : Wa_Fig_3cs.jpg (433.4 KB), Download : 3



          3.4 Wave packets and dispersion    

   Consider what would happen if the frequency components that make up the waveform (called a "wave packet" if it's localized in time and space) had different speeds. We can see an example of that in Fig. 3.24.. Three frequency components have the right amplitude and frequency to add up to a square(ish) pulse at some initial location and time. But at a different location the relative phase between the component waves will be different. We can see the result of that change in relative phase in the bottom-right portion of the Fig. 3.24.: The shape of the resultant waveform changes over distance.
   This effect is called "dispersion". And when dispersion is present, the speed of each individual frequency component is called the phase velocity or phase speeds of the component, and the speed of the wave packet's envelope is called the "group velocity" or group speed.(4) In order to understand the group velocity of a wave packet, look at an example shown in Fig. 3.25. Here the two component waves start off in phase and produce a large resultant wave. When the two component waves have slightly different frequencies and the amplitude of the resultant waveform varies as it does in Fig. 3.25, and the waveform is said to be "modulated", and this particular type of modulation is called "beats". The modulation envelope shown here provides a convenient way to determine the group velocity of a wave packet. To see how that works, write the phase of them as 𝜙 = 𝑘𝑥 - 𝜔𝑡,
            𝜙1 = 𝑘1𝑥 - 𝜔1𝑡,     𝜙2 = 𝑘2𝑥 - 𝜔2𝑡.        
This means that the phase difference between the wave is
            𝛥𝜙 = 𝜙2 - 𝜙1 = (𝑘2𝑥 - 𝜔2𝑡) - (𝑘1𝑥 - 𝜔1𝑡) = (𝑘2 - 𝑘1)𝑥 - (𝜔2 - 𝜔1)𝑡.
To determine how fast that envelope moves, consider what happen over a small increment of time (𝛥𝑡) and distance (𝛥𝑥). If we are following a point on the resultant wave, the relative phase between thee two component must be the same. So whatever change occurs due to the passage of time 𝛥𝑡 must be compensated for by a phase change due to a change in 𝛥𝑥. his means that
    (3.36)   (𝑘2 - 𝑘1)𝛥𝑥 = (𝜔2 - 𝜔1)𝛥𝑡     or     𝛥𝑥/𝛥𝑡 =  (𝜔2 - 𝜔1)/(𝑘2 - 𝑘1).
This is the group velocity for two components. And a far more general expression can be found with wavenumbers clustered around an average waenumber 𝑘a by expanding 𝜔(𝑘) in a Taylor series:
           𝜔(𝑘) = 𝜔(𝑘a) + 𝑑𝜔/𝑑𝑘 ∣𝑘=𝑘a(𝑘 - 𝑘a) + 1/2! 𝑑2𝜔/𝑑𝑘2𝑘=𝑘a(𝑘 - 𝑘a)2 + ⋅ ⋅ ⋅ .
For the case in which the difference between the wavenumber is small, the higher-order terms of the expression are negligible, so we have
           𝜔(𝑘) ≈ 𝜔(𝑘a) + 𝑑𝜔/𝑑𝑘 ∣𝑘=𝑘a(𝑘 - 𝑘a)     or    [𝜔(𝑘) - 𝜔(𝑘a)]/(𝑘 - 𝑘a) ≈ 𝑑𝜔/𝑑𝑘 ∣𝑘=𝑘a.    
Thus 
           𝑣group = [𝜔(𝑘) - 𝜔(𝑘a)]/(𝑘 - 𝑘a) ≈ 𝑑𝜔/𝑑𝑘∣𝑘=𝑘a.
So the group velocity of a wave packet is 𝑣group = 𝑑𝜔/𝑑𝑘 and the phase velocity of a wave component is 𝑣phase = 𝜔/𝑘.
   When dealing with dispersion, we are to encounter graphs in which 𝜔 is plotted on the vertical axis and 𝑘 is on the horizontal. If no dispersion is present, then the wave angular frequency 𝜔 is related to the wavenumber 𝑘 by 𝑘 = 𝑐1𝑘 where 𝑐1 represents the speed of propagation. In this the case, he dispersion plot is linear, as shown in Fig. 3.26. In the non-dispersive case, the phase velocity 𝜔/𝑘 is the same at all values of 𝑘 and is the same as the group velocity 𝑑𝜔/𝑑𝑘.
   When dispersion is present, the relationship between the phase velocity and the group velocity depends on the nature of the dispersion. In one important case pertaining to quantum waves, the angular frequency is proportional to the square of the wavenumber (𝜔 = 𝑐2𝑘2) as in Fig. 3.27.
In this case the phase velocity and group velocity are
           𝑣phase = 𝜔/𝑘 = 𝑐2𝑘2/𝑘 = 𝑐2𝑘
           𝑣group = 𝑑𝜔/𝑑𝑘 = 𝑑(𝑐2𝑘2)/𝑑𝑘 = 2𝑐2𝑘,
which is the twice the phase velocity as in as in Fig. 3.28. Notice that 𝑣group is increasing twice as big as 𝑣phase.
                                                              
(4) Since velocity is a vector, phase and group velocity should include the direction, but in this context speed and velocity are used interchangeably.

* Textbook: D. Fleisch & J. Kinnaman A Student's Guide to Waves (Cambridge University Press 2015)


Name
Spamfree

     ¿©±â¸¦ Ŭ¸¯ÇØ ÁÖ¼¼¿ä.

Password
Comment

  ´ä±Û¾²±â   ¸ñ·Ïº¸±â
¹øÈ£ Á¦               ¸ñ À̸§ ¿¬°ü ³¯Â¥ Á¶È¸
°øÁö  'Çö´ë ¿ìÁÖ·Ð'¿¡ °üÇÑ Å½±¸ÀÇ Àå    °ü¸®ÀÚ 1 2017-08-15
11:36:55
1293
°øÁö  À§Å°¹é°ú ¾÷µ¥ÀÌÆ®: ·ÎÀú Ææ·ÎÁî  ✅   [1]  ±è°ü¼® 1 2021-09-28
06:56:21
2392
160  Baumann's Cosmology  Supp  Ch 2e. Problems    ±è°ü¼® 3 2025-03-24
15:13:37
9
159    Supplement  Chapter 3e. Problems    ±è°ü¼® 3 2025-03-24
15:13:37
9
158      Supplement  Chapter 4c. Problems      ±è°ü¼® 3 2025-03-24
15:13:37
9
157  Baumann's Cosmology  App  Aa. Elements of GR    ±è°ü¼® 3 2025-03-24
15:34:37
69
156    Appendix  Ab. Einstein Equation    ±è°ü¼® 3 2025-03-24
15:34:37
69
155      Appendix  Ba. Details of the CMB Analysis   ✍🏻    ±è°ü¼® 3 2025-03-24
15:34:37
69
154  Baumann's Cosmology  8a. Quantum Conditions    ±è°ü¼® 4 2025-01-08
22:13:54
130
153    Cosmology  8b. Quantum Fluctuations    ±è°ü¼® 4 2025-01-08
22:13:54
130
152      Cosmology  8c. Primordial Power Spectra    ±è°ü¼® 4 2025-01-08
22:13:54
130
151        Cosmology  8d. Obs. Constraints; 9 Outlook    ±è°ü¼® 4 2025-01-08
22:13:54
130
150  Baumann's Cosmology  7a. CMB Physics  ✅    ±è°ü¼® 5 2024-12-13
19:16:42
1691
149    Cosmology  7b. Primordial Sound Waves    ±è°ü¼® 5 2024-12-13
19:16:42
1691
148      Cosmology  7c. CMB Power Spectrum    ±è°ü¼® 5 2024-12-13
19:16:42
1691
147        Cosmology  7d. Glimpse at CMB Polarization    ±è°ü¼® 5 2024-12-13
19:16:42
1691
146          Cosmology  7e. Summary and Problems    ±è°ü¼® 5 2024-12-13
19:16:42
1691
145  Baumann's Cosmology  6a. Relativistic Perturbation    ±è°ü¼® 4 2024-11-08
17:16:07
355
144    Cosmology  6b. Conservation Eqs; Initial Conditions    ±è°ü¼® 4 2024-11-08
17:16:07
355
143      Cosmology  6c. Growth of Matter Perturbations    ±è°ü¼® 4 2024-11-08
17:16:07
355
142        Cosmology  6d. Summary and Problems    ±è°ü¼® 4 2024-11-08
17:16:07
355
141  Baumann's Cosmology  4a. Cosmological Inflation    ±è°ü¼® 5 2024-10-21
22:17:39
406
140    Cosmology  4b. Physics of Inflation    ±è°ü¼® 5 2024-10-21
22:17:39
406
139      Cosmology  5a. Newtonian Perturbation    ±è°ü¼® 5 2024-10-21
22:17:39
406
138        Cosmology  5b. Statistical Properties    ±è°ü¼® 5 2024-10-21
22:17:39
406
137          Cosmology  5c. Summary and Problems    ±è°ü¼® 5 2024-10-21
22:17:39
406
136  Baumann's Cosmology  3a. Hot Big Bang  ✅     ±è°ü¼® 4 2024-09-22
23:39:47
1614
135    Cosmology  3b. Thermal Equilibrium    ±è°ü¼® 4 2024-09-22
23:39:47
1614
134      Cosmology  3c. Boltzmann Equation    ±è°ü¼® 4 2024-09-22
23:39:47
1614
133        Cosmology  3d. Beyond Equilibrium    ±è°ü¼® 4 2024-09-22
23:39:47
1614
132  Baumann's Cosmology  1. Introduction  ⚫  [1]  ±è°ü¼® 5 2024-09-01
12:43:52
7146
131    Cosmology  2a. Expanding Universe    ±è°ü¼® 5 2024-09-01
12:43:52
7146
130      Cosmology  2b. Dynamics      ±è°ü¼® 5 2024-09-01
12:43:52
7146
129        Cosmology  2c. Friedmann Equations    ±è°ü¼® 5 2024-09-01
12:43:52
7146
128          Cosmology  2d. Our Universe    ±è°ü¼® 5 2024-09-01
12:43:52
7146
127  Waves  1. Wave fundamentals  ✅    ±è°ü¼® 8 2024-05-07
09:24:42
1525

    ¸ñ·Ïº¸±â   ´ÙÀ½ÆäÀÌÁö     ±Û¾²±â 1 [2][3][4][5]
    

Copyright 1999-2025 Zeroboard / skin by zero & Artech