±âº» ÆäÀÌÁö Æ÷Æ®Æú¸®¿À ´ëÇѹα¹ÀÇ ÀüÅë°ÇÃà Áß±¹°ú ÀϺ»ÀÇ ÀüÅë°ÇÃà ¼­À¯·´°ú ¹Ì±¹ÀÇ °ÇÃà ±¹¿ª û¿À°æ Çö´ë ¿ìÁÖ·Ð ´ëÇѹα¹ÀÇ »êdz°æ ¹éµÎ´ë°£ Á¾ÁÖ»êÇà ³×ÆÈ È÷¸»¶ó¾ß Æ®·¹Å· ¸ùºí¶û Áö¿ª Æ®·¹Å· ¿ä¼¼¹ÌƼ ij³â µî Ƽº£Æ® ½ÇÅ©·Îµå ¾ß»ý »ý¹° ÆÄ³ë¶ó¸¶»çÁø °¶·¯¸® Ŭ·¡½Ä ·¹ÄÚµå °¶·¯¸® AT Æ÷·³ Æ®·¹Å· Á¤º¸ ¸µÅ©


 ·Î±×ÀÎ  È¸¿ø°¡ÀÔ

Maxwell ¹æÁ¤½Ä°ú ÀüÀÚ±âÆÄÀÇ ¼Óµµ  🔵
    ±è°ü¼®  2018-06-22 00:35:54, Á¶È¸¼ö : 4,560
- Download #1 : maxwell_eq_s.jpg (92.2 KB), Download : 2



1862³â Foucault´Â ±¤¼ÓÀ» ÃøÁ¤ÇÏ¿´°í, 1865³â Maxwelldm ÀüÀÚ±âÆÄÀÇ ¼Óµµ°¡ ±¤¼Ó°ú °°À½À» ¹ß°ßÇß½À´Ï´Ù.
ÀüÀÚ±âÆÄ-±¤¼ÓÀ» ¼ö¸®¹°¸®ÇÐÀûÀ¸·Î ÀÌÇØÇÏ´Â °ÍÀÌ »ó´ë¼ºÀÌ·Ð ÀÌÇØÀÇ ¹ÙÅÁÀÌ µÇ¹Ç·Î ±× °úÁ¤À» °£°áÇÏ°Ô ¿©±â¿¡ Á¤¸®ÇØ ³õ½À´Ï´Ù
EinsteinÀÇ Áß·ÂÀå ÀÌ·ÐÀº MaxwellÀÇ ÀüÀÚ±âÀå À̷п¡¼­ Ãâ¹ßÇÏ¿´À¸¹Ç·Î ÇнÀÇÒ ¶§ ¾Æ·¡ ¼³¸íÀÌ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.


À̸¦ À§Çؼ­´Â º¤ÅÍ Dot product(³»Àû), Cross product(¿ÜÀû), Del(𝛁), Gradient(±â¿ï±â), Divergence(¹ß»ê), Curl(ȸÀü)µîÀÇ °³³äÀÌ ÇÊ¿äÇÕ´Ï´Ù.
´ÙÀ½À¸·Î ¹°¸®Çп¡¼­ MaxwellÀÇ ¹æÁ¤½ÄÀ» °¢°¢ integral form(ÀûºÐÇü)°ú differential form(¹ÌºÐÇü)À¸·Î ¸ðµÎ ÀÌÇØÇÏ¿©¾ß ÇÕ´Ï´Ù.
ºûÀÇ ÆÄµ¿¹æÁ¤½Ä¿¡ ´ëÇØ¼­ Ç®¸é ÀüÀÚ±âÆÄÀÇÀÇ ¼Óµµ°¡ »êÃâµÇ´Âµ¥ ±× °á°ú°¡ ±¤¼Ó 2.9979 *108 m/sÀÔ´Ï´Ù!

    [±âº» ¼öÇÐÀû Á¤ÀÇ/Á¤¸®]  

Dot product: 𝐚 ∙ 𝐛 = |𝐚||𝐛|cos𝜃                        <-  ∙ (dot), ´ë¼öÀû Á¤ÀÇ(a1b1+ a2b2+...+anbn)ÀÇ °á°ú
Cross product: 𝐚 ¡¿ 𝐛 = |𝐚||𝐛|sin𝜃                   <- ¡¿ (cross)
Del: 𝛁 ¡Õ 𝐢 ¡Ó/¡Óx + 𝐣 ¡Ó/¡Óy + 𝐤 ¡Ó/¡Óz                          <- 𝛁 (Nabla) [del]
Gradient: 𝛁 ¥× ¡Õ 𝐢 ¡Ó¥×/¡Óx + 𝐣 ¡Ó¥×/¡Óy + 𝐤 ¡Ó¥×/¡Óz       <- ¥× (psi)
    * The gradient indicates the rate of spacial change of the field at a point and the direction of steepest increase from that point.[vector result]
Divergence: 𝛁 ∙ 𝐀 ¡Õ ¡Ó𝐀x /¡Óx + ¡Ó𝐀y /¡Óy + ¡Ó𝐀z /¡Óz
    * The divergence indicates the tendency of the field to flow away from a point. [scalar result]
Curl: 𝛁 ¡¿ 𝐀 ¡Õ (¡Ó𝐀z /¡Óy - ¡Ó𝐀y /¡Óz) 𝐢  + (¡Ó𝐀x /¡Óz - ¡Ó𝐀z /¡Óx) 𝐣 + (¡Ó𝐀y /¡Óx - ¡Ó𝐀x /¡Óy) 𝐤
    * The curl indicates the tendency of the field to circulate around a point and the direction of axis of greatest circulation.[vector result]

   [°ü·Ã ¼öÇÐÀû Á¤¸®]

Curl of Gradient: 𝛁 ¡¿ 𝛁 ¥× = 0
Laplacian = Divergence of Gradient: 𝛁 ∙ 𝛁 ¥× = 𝛁©÷ ¥× = ¡Ó©÷¥×/¡Óx©÷ + ¡Ó©÷¥×/¡Óy©÷ + ¡Ó©÷¥×/¡Óz©÷
Curl of the curl:  𝛁 ¡¿ (𝛁 ¡¿ 𝐀) = 𝛁 (𝛁 ∙ 𝐀) - 𝛁©÷ 𝐀
The Divergence theorems 𝐀 ∙ ň da = ¡òv (𝛁 ∙ 𝐀) dV
    * The flux of a vector field through a closed surface S is equal to the integral of the divergence of that field over a volume V for which S is a boundary.
Stokes' theoremc 𝐀 ∙ d𝒍 = ¡òs (𝛁 ¡¿ 𝐀) ∙ ň da
    * The circulation of a vector field over a closed path C is equal to the integral of the normal component of the curl of that field over surface S for which C is boundary.

   [MaxwellÀÇ ¹æÁ¤½Ä(Maxwell's Equation)]  

1) Gauss's law for electrical fields: ¢±s 𝑬 ∙ ň da = q /𝜖₀  [ň: unit normal vector, 𝑬: electric field in volts V/m, q: charge, 𝜖₀: permittivity of free space(Áø°ø À¯ÀüÀ²)]
    * Electric charge produces an electric field, and the flux of that field passing through any closed surface is proportional to the total charge contained within that surface.
       applying the divergence theorem ->    𝛁 ∙ 𝑬 = 𝜌/𝜖₀  [𝜌: charge density(ÀüÇÏ ¹Ðµµ) coulombs C/m©ø]
    * The electric field produced by electric charge diverges from positive charge and converges upon negative charge. 
                          
2) Gauss's law for magnetic fields: ¢±s 𝑩 ∙ ň da = 0 [𝑩: magnetic field in tesla T]
    * The total magnetic flux passing through any closed surface is zero.
       applying the divergence theorem ->    𝛁 ∙ 𝑩 = 0
    * The divergence of the magnetic field at any point is zero.

3) Faraday's law: ¢±c 𝑬 ∙ d𝒍 = - d/dt (¡òs 𝑩 ∙ ň da) = - ¡òs (¡Ó𝑩/¡Ót) ∙ ň da  <- emf: electromotive force(À¯µµ±âÀü·Â)
    * Changing magnetic flux through a surface induces an emf in any boundary path of that surface, and a changing magnetic field induces a circulating electric field.  
       applying Stoke's theorem ->    𝛁 ¡¿ 𝑬 = - ¡Ó𝑩/¡Ót
    * A circulating electric field is produced by a magnetic field that changes with time.

4) Ampere-Maxwell law: ¢±c 𝑩 ∙ d𝒍 = 𝜇₀ [𝑱 + 𝜖₀ d/dt (¡òs 𝑬 ∙ ň da)] [𝜇₀: magnetic permittivity of free space(Áø°ø ÅõÀÚÀ²),  𝑱: electric current in amperes A] <- ¥ì(mu)
    * An electric current or a changing electric flux through a surface produce a circulating magnetic field around any path that bounds that surface.
       applying Stokes' theorem ->    𝛁 ¡¿ 𝑩 = 𝜇₀ (𝑱 + 𝜖₀ ¡Ó𝑬/¡Ót) [𝑱: current density(Àü·ù ¹Ðµµ) A/m©÷]       
    * A circulating magnetic field is produced by an electric current and by an electric field that changes with time.

   [ÆÄµ¿¹æÁ¤½Ä(The Wave Equation)°ú ÀüÀÚ±âÆÄ ¼Óµµ]    

𝛁©÷𝑨 = (1/𝑣©÷) ¡Ó©÷𝑨/¡Ót©÷                           <-  ÆÄµ¿¹æÁ¤½Ä(the wave equation),  𝑣: velocity of wave
𝛁 ¡¿ (𝛁 ¡¿ 𝑬) = 𝛁 ¡¿ (- ¡Ó𝑩/¡Ót) = - ¡Ó(𝛁 ¡¿ 𝑩)/¡Ót      <-  3) Faraday's law ¾çº¯¿¡ '𝛁 ¡¿' Àû¿ë
𝛁 ¡¿ (𝛁 ¡¿ 𝑨) = 𝛁 (𝛁 ∙ 𝑬) - 𝛁©÷𝑨                  <- applying curl of the curl
𝛁 ∙ 𝑬 = 𝜌/𝜖₀;  𝛁 ¡¿ 𝑩 = 𝜇₀ (𝑱 + 𝜖₀ ¡Ó𝑬/¡Ót)         <-  Maxwell's equation 1) 4) ¿¡¼­
𝜌 = 0,   𝑱 = 0                                <- free region ¼ÓÀ̹ǷÎ
𝛁©÷𝑬 = 𝜇₀ 𝜖₀ ¡Ó©÷𝑬/¡Ót©÷;  𝛁©÷𝑩 = 𝜇₀ 𝜖₀ ¡Ó©÷𝑩/¡Ót©÷
¡Å [𝑬/𝑩] 1/𝑣©÷ = 𝜇₀ 𝜖₀,  𝑣 = ¡î (1/𝜇₀ 𝜖₀) = ¡î 1/[(4¥ð *10-7 m kg/C©÷)(8.8541878 *10-12 C©÷ s©÷/kg m©ø)] = 2.9979 *108 m/s !

ÀÌ´Â NewtonÀÇ ¹°¸®ÇÐ ¹ýÄ¢À¸·Î´Â ¼³¸íµÇÁö ¾Ê¾ÒÀ¸¹Ç·Î Çö´ë°úÇÐ ¹ßÀü¿¡ ¸·´ëÇÑ ¿µÇâ·ÂÀ» °¡Á®¿Â »ç°ÇÀ̶ó ÇϰڽÀ´Ï´Ù.
±×°ÍÀÌ ¾Ë·ÁÁø ±¤¼Ó°ú ÀÏÄ¡ÇßÀ¸¹Ç·Î ºûµµ ÀüÀÚ±âÆÄÀÓÀ» ¾Ë°Ô µÇ¾úÀ¸¸ç, EinsteinÀÌ Æ¯¼ö»ó´ë¼º ÀÌ·ÐÀ» µµÃâÇÏ´Â °è±â°¡ µÇ¾ú½À´Ï´Ù.
±¹Á¦´ÜÀ§°è(SI)¿¡¼­´Â 1983³â 1¹ÌÅ͸¦ ºû(ÀüÀÚ±âÆÄ)ÀÌ Áø°ø¿¡¼­ 1/299,792,458Ãʰ£ ÁøÇàÇÑ °æ·ÎÀÇ ±æÀÌ·Î Á¤ÇÏ¿´½À´Ï´Ù.


* Âü°í¹®Çå: Daniel A. Fleisch A Student's Guide to Maxwell's Equation (Cambridge University Press 2008)


Name
Spamfree

     ¿©±â¸¦ Ŭ¸¯ÇØ ÁÖ¼¼¿ä.

Password
Comment

  ´ä±Û¾²±â   ¸ñ·Ïº¸±â
¹øÈ£ Á¦               ¸ñ À̸§ ¿¬°ü ³¯Â¥ Á¶È¸
°øÁö  'Çö´ë ¿ìÁÖ·Ð'¿¡ °üÇÑ Å½±¸ÀÇ Àå    °ü¸®ÀÚ 1 2017-08-15
11:36:55
1315
°øÁö  À§Å°¹é°ú ¾÷µ¥ÀÌÆ®: º¼Ã÷¸¸ ¹æÁ¤½Ä, ¿£Æ®·ÎÇÇ   ✅   [1]  ±è°ü¼® 1 2021-09-28
06:56:21
2453
161  Palmer's The Primacy of Doubt <Ä«¿À½º ¿¡ºê¸®¿þ¾î>  ✍🏻    ±è°ü¼® 2 2025-05-11
08:43:54
58
160    Gleick's CHAOS <Ä«¿À½º: »õ·Î¿î °úÇÐÀÇ ÃâÇö>  ✍🏻    ±è°ü¼® 2 2025-05-11
08:43:54
58
159  Supplement  Chapter 2e. Problems    ±è°ü¼® 3 2025-03-24
15:13:37
87
158    Supplement  Chapter 3e. Problems    ±è°ü¼® 3 2025-03-24
15:13:37
87
157      Supplement  Chapter 4c. Problems    [1]  ±è°ü¼® 3 2025-03-24
15:13:37
87
156  Appendix  Aa. Elements of GR    ±è°ü¼® 2 2025-01-28
20:37:19
104
155    Appendix  Ab. Einstein Equation    ±è°ü¼® 2 2025-01-28
20:37:19
104
154  Baumann's Cosmology  8a. Quantum Conditions    ±è°ü¼® 4 2025-01-08
22:13:54
201
153    Cosmology  8b. Quantum Fluctuations    ±è°ü¼® 4 2025-01-08
22:13:54
201
152      Cosmology  8c. Primordial Power Spectra    ±è°ü¼® 4 2025-01-08
22:13:54
201
151        Cosmology  8d. Obs. Constraints; 9 Outlook    ±è°ü¼® 4 2025-01-08
22:13:54
201
150  Baumann's Cosmology  7a. CMB Physics  ✅    ±è°ü¼® 5 2024-12-13
19:16:42
1783
149    Cosmology  7b. Primordial Sound Waves    ±è°ü¼® 5 2024-12-13
19:16:42
1783
148      Cosmology  7c. CMB Power Spectrum    ±è°ü¼® 5 2024-12-13
19:16:42
1783
147        Cosmology  7d. Glimpse at CMB Polarization    ±è°ü¼® 5 2024-12-13
19:16:42
1783
146          Cosmology  7e. Summary and Problems    ±è°ü¼® 5 2024-12-13
19:16:42
1783
145  Baumann's Cosmology  6a. Relativistic Perturbation    ±è°ü¼® 4 2024-11-08
17:16:07
415
144    Cosmology  6b. Conservation Eqs; Initial Conditions    ±è°ü¼® 4 2024-11-08
17:16:07
415
143      Cosmology  6c. Growth of Matter Perturbations    ±è°ü¼® 4 2024-11-08
17:16:07
415
142        Cosmology  6d. Summary and Problems    ±è°ü¼® 4 2024-11-08
17:16:07
415
141  Baumann's Cosmology  4a. Cosmological Inflation    ±è°ü¼® 5 2024-10-21
22:17:39
484
140    Cosmology  4b. Physics of Inflation    ±è°ü¼® 5 2024-10-21
22:17:39
484
139      Cosmology  5a. Newtonian Perturbation    ±è°ü¼® 5 2024-10-21
22:17:39
484
138        Cosmology  5b. Statistical Properties    ±è°ü¼® 5 2024-10-21
22:17:39
484
137          Cosmology  5c. Summary and Problems    ±è°ü¼® 5 2024-10-21
22:17:39
484
136  Baumann's Cosmology  3a. Hot Big Bang  ✅     ±è°ü¼® 4 2024-09-22
23:39:47
1672
135    Cosmology  3b. Thermal Equilibrium    ±è°ü¼® 4 2024-09-22
23:39:47
1672
134      Cosmology  3c. Boltzmann Equation    ±è°ü¼® 4 2024-09-22
23:39:47
1672
133        Cosmology  3d. Beyond Equilibrium    ±è°ü¼® 4 2024-09-22
23:39:47
1672
132  Baumann's Cosmology  1. Introduction  ⚫  [1]  ±è°ü¼® 5 2024-09-01
12:43:52
7220
131    Cosmology  2a. Expanding Universe    ±è°ü¼® 5 2024-09-01
12:43:52
7220
130      Cosmology  2b. Dynamics      ±è°ü¼® 5 2024-09-01
12:43:52
7220
129        Cosmology  2c. Friedmann Equations    ±è°ü¼® 5 2024-09-01
12:43:52
7220
128          Cosmology  2d. Our Universe    ±è°ü¼® 5 2024-09-01
12:43:52
7220

    ¸ñ·Ïº¸±â   ´ÙÀ½ÆäÀÌÁö     ±Û¾²±â 1 [2][3][4][5]
    

Copyright 1999-2025 Zeroboard / skin by zero & Artech